[1]

H. Nagashima, “Experiment on Solitary Waves in the Nonlinear Transmission Line Discribed by the Equation u_{t}+uu_{ζ}u_{ζζζζζ}=0,” Journal of the Physical Society of Japan, Vol. 47, 1979, pp. 13871388. doi:10.1143/JPSJ.47.1387

[2]

Y. Yamaoto and E. Takizawa, “On a Solution on NonLinear Time—Evolution Equation of FifthOrder,” Journal of the Physical Society of Japan, Vol. 50, 1981, pp. 14211422. doi:10.1143/JPSJ.50.1421

[3]

T. Kawahrara, “Oscillatary Solitary Waves in Dispersive Media,” Journal of the Physical Society of Japan, Vol. 33, 1972, pp. 260264. doi:10.1143/JPSJ.33.260

[4]

J. P. Boyd, “Solitons from Sine Waves: Analytical and Numerical Methods for NonIntegrable Solitary and Conoidal Waves,” Physica 21D, 1986, pp. 227246.

[5]

S. E. Haupt and J. P. Boyd, “Modelling Nonlinear Resonance: A Modification to the Stokes Perturbation Expansion,” Wave Motion, Vol. 10, No. 1, 1988, pp. 8398.

[6]

K. Djidjeli, W. G. Price, E. H. Twizell and Y. Wang, “Numerical Methods for the Soltution of the Third and FifthOrder Disprsive KortewegDe Vries Equations,” Journal of Computational and Applied Mathematics, Vol. 58, No. 3, 1995, pp. 307336.
doi:10.1016/03770427(94)00005L

[7]

A. M. Wazwaz, “Analytic Study on the Generalized KdV Equation: New Solution and Periodic Solutions,” Elsevier, Amsterdam, 2006.

[8]

M. T. Darvishi and F. Khani, “Numerical and Explicit Solutions of the Fifth Order KortewegDe Vries Equations,” Elsevier, Amsterdam, 2007.

[9]

G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer Academic Publisher, Dordrecht, 1994.

[10]

D. Kaya, “The Use of Adomian Decomposition Methods for Solving a Specific Nonlinear Partial Differential Equations,” Bulletin of the Belgian Mathematical Society Simon Stevin, Vol. 9, No. 3, 2002, pp. 343349.

[11]

G. Adomian, “The FifthOrder KortewegDe Vries Equation,” International Journal of Mathematics and Mathematical Sciences, Vol. 19, No. 2, 1996, p. 415.
doi:10.1155/S0161171296000592

[12]

D. Kaya, “An Explicit and Numerical Solutions of Some FifthOrder KdV Equation by Decomposition Method,” Applied Mathematics and Computation, Vol. 144, No. 23, 2003, pp. 353363. doi:10.1016/S00963003(02)004125

[13]

D. Kaya, “An Application for the Higher Order Modified KdV Equation by Decomposition Method,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, No. 6, 2005, pp. 693702.
doi:10.1016/j.cnsns.2003.12.009

[14]

D. Kaya and S. M. ElSayed, “On a Generalized Fifth Order KdV Equations,” Physics Letters A, Vol. 310, No. 1, 2003, pp. 4451. doi:10.1016/S03759601(03)002159

[15]

M. A. Helal and M. S. Mehanna, “A Comparative Study between Two Different Methods for Solving the General KortewegDe Vries Equation (GKDV),” Chaos, Solitons & Fractals, Vol. 33, No. 3, 2007, pp. 725739.
doi:10.1016/j.chaos.2006.11.011

[16]

A. M. Wazwaz, “A Reliable Technique for Solving Linear and Nonlinear Schrodinger Equations by Adomian Decompostion Method,” Bulletin of the Institute of Mathematics, Vol. 29, No. 2, 2001, pp. 125134.

[17]

A. M. Wazwaz and S. M. ElSayed, “A New Modification of the Adomian Decoomposition Method for Linear and Nonlinear Operators,” Applied Mathematics and Computations, Vol. 122, 2001, pp. 393405.

[18]

A. M. Wazwaz, “Partial Differential Equations and Solitary Waves Theory,” Higher Education Press, Beijing; SpingerVerlag, Berlin, 2009.

[19]

K. Sawada and T. Kotera, “A Method for Finding NSoliton Solutions of the KdV. Equation and the KbVLike Equation,” Progress of Theoretical Physics, Vol. 51, No. 5, 1974, pp. 13551367. doi:10.1143/PTP.51.1355

[20]

P. J. Coudery, R. K. Dodd and J. D. Gibbon, “A New Hierarchy of KortewegDe Vries Equations,” Proceedings of the Royal Society A, Vol. 351, No. 1666, 1976, pp. 407422. doi:10.1098/rspa.1976.0149

[21]

P. D. Lax, “Integrals of Nonlinear Equations of Evolution and Solitary Waves,” Communications on Pure and Applied Mathematics, Vol. 21, No. 5, 1968, pp. 467490.
doi:10.1002/cpa.3160210503

[22]

D. J. Kaup, “On the Iverse Scattering Problem for Cubic Eigenvalue Problems of the Class
Ψ_{xxx}+6QΨ_{x}+6RΨ=λΨ,” Studies in Applied Mathematics, Vol. 62, 1980, pp. 189216.

[23]

B. A. Kuperschmidt, “A Super KdV Equation: An Integral System,” Physics Letters A, Vol. 102, No. 56, 1984, pp. 213215. doi:10.1016/03759601(84)906935

[24]

M. Ito, “An Extension of Nonlinear Evolution Equations of the KdV (mKdV) Type of Higher Orders,” Journal of the Physical Society of Japan, Vol. 49, No. 2, 1980, pp. 771778. doi:10.1143/JPSJ.49.771

[25]

Y. Lei, Z. Fajiang and W. Yinghai, “The Homogeneous Balance Method, Lax Pair Hirota Transformation and a General Fifth Order KdV Equation,” Chaos Solutions Fractals, Vol. 13, 2002, p. 337.
