A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape, and Size/Shape-Dependent Optical Properties

DOI: 10.4236/ampc.2013.31003   PDF   HTML   XML   3,861 Downloads   6,600 Views   Citations

Abstract

With the features of convenience and eco-friendly, the low-temperature solid-state reaction synthesis was successfully developed as a new approach to prepare quantum-sized ZnS nanocrystals. One major achievement is that the size and shape of ZnS nanocrystals can be tuned by adjusting the surfactant and its feed. The UV-Vis absorption spectra of quasispherical and one-dimensional quantum-sized ZnS nanocrystals all showed a blue-shift from the bulk counterpart, indicating large quantum confinement effects of ZnS nanocrystals. These ZnS nanocrystals all showed well-defined excitonic emission features. Contrastive studies on photoluminescence performances indicated that the bandedge emission experienced only the size-dependent quantum confinement effect, while the trap-state emission experienced the size- and shape-dependences. So we can design a purposeful synthesis route to ZnS nanocrystals with target luminescence emission performances.

 

Share and Cite:

P. Hu, Y. Cao, Y. Lou, B. Lu, M. Shao, J. Ni and M. Cao, "A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape, and Size/Shape-Dependent Optical Properties," Advances in Materials Physics and Chemistry, Vol. 3 No. 1, 2013, pp. 10-18. doi: 10.4236/ampc.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. E. Brus, “A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites,” Journal of Chemical Physics, Vol. 79, No. 11, 1983, pp. 5566-5571. doi:10.1063/1.445676
[2] M. Nirmal and L. E. Brus, “Luminescence Photophysics in Semiconductor Nanocrystals,” Accounts of Chemical Research, Vol. 32, No. 5, 1999, pp. 407-414. doi:10.1021/ar9700320
[3] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals,” Nature, Vol. 404, No. 6773, 2000, pp. 59-61. doi:10.1038/35003535
[4] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science, Vol. 290, No. 5490, 2000, pp. 314-317. doi:10.1126/science.290.5490.314
[5] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, Vol. 307, No. 5709, 2005, pp. 538-544. doi:10.1126/science.1104274
[6] T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim and K. Kim, “Full-Colour Quantum Dot Displays Fabricated by Transfer Printing,” Nature Photonics, Vol. 5, No. 3, 2011, pp. 176-182. doi:10.1038/nphoton.2011.12
[7] C. L. Cowles and X. S. Zhu, “Sensitive Detection of Cardiac Biomarker Using ZnS Nanoparticles as Novel Signal Transducers,” Biosensors and Bioelectronics, Vol. 30, No. 1, 2011, pp. 342-346. doi:10.1016/j.bios.2011.09.034
[8] K. E. Sapsford, I. L. Medintz, J. P. Golden, J. R. Deschamps, H. T. Uyeda and H. Mattoussi, “Surface-Immobilized Self-Assembled Protein-Based Quantum Dot Nanoassemblies,” Langmuir, Vol. 20, No. 18, 2004, pp. 7720-7728. doi:10.1021/la049263n
[9] Y. W. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis and J. Q. Xiao, “Low-Temperature Synthesis of Hexagonal (Wurtzite) ZnS Nanocrystals,” Journal of the American Chemical Society, Vol. 126, No. 22, 2004, pp. 6874-6875. doi:10.1021/ja048650g
[10] Y. J. Zhang, H. R. Xu and Q. B. Wang, “Ultrathin Single Crystal ZnS Nanowires,” Chemical Communications, Vol. 46, No. 47, 2010, pp. 8941-8943. doi:10.1039/c0cc02549f
[11] C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annual Review of Materials Science, Vol. 30, No. 1, 2000, pp. 545-610. doi:10.1146/annurev.matsci.30.1.545
[12] R. F. Service, “Don’t Sweat the Small Stuff,” Science, Vol. 320, 2008, pp. 1584-1585. doi:10.1126/science.320.5883.1584b
[13] P. F. Hu and Y. L. Cao, “A New Chemical Route to a Hybrid Nanostructure: Room-Temperature Solid-State Reaction Synthesis of Ag@AgCl with Efficient Photocatalysis,” Dalton Transactions, Vol. 41, No. 29, 2012, pp. 8908-8912. doi:10.1039/c2dt30779k
[14] S. Kulmala and J. Suomi, “Current Status of Modern Analytical Luminescence Methods,” Analytica Chimica Acta, Vol. 500, No. 1-2, 2003, pp. 21-69. doi:10.1016/j.aca.2003.09.004
[15] W. G. Becker and A. J. Bard, “Photoluminescence and Photoinduced Oxygen Adsorption of Colloidal Zinc Sulfide Dispersions,” The Journal of Physical Chemistry, Vol. 87, No. 24, 1983, pp. 4888-4893. doi:10.1021/j150642a026
[16] N. Chestnoy, T. D. Harris, R. Hull and L. E. Brus, “Luminescence and Photophysics of CdS Semiconductor Clusters: The Nature of the Emitting Electronic State,” The Journal of Physical Chemistry, Vol. 90, No. 15, 1986, pp. 3393-3399. doi:10.1021/j100406a018
[17] S. Wageh, Z. S. Ling and X. X. Rong, “Growth and Optical Properties of Colloidal ZnS Nanoparticles,” Journal of Crystal Growth, Vol. 255, No. 3-4, 2003, pp. 332-337. doi:10.1016/S0022-0248(03)01258-2
[18] J. H. Yu, J. Joo, H. M. Park, S. Baik, Y. W. Kim, S. C. Kim and T. Hyeon, “Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism,” Journal of the American Chemical Society, Vol. 127, No. 15, 2005, pp. 5662-5670. doi:10.1021/ja044593f

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.