Utilization of Soluble Starch by Oleaginous Red Yeast Rhodotorula glutinis

DOI: 10.4236/jsbs.2013.31007   PDF   HTML     3,602 Downloads   7,074 Views   Citations


Starch containing wastewaters from the food and feed industry have been identified as potential cheap carbon sources for the production of microbial lipids. Due to its high potential lipid content the oleaginous yeast Rhodotorula glutinis is often used for fermentations in this field. Moreover it is investigated in the context of microbial carotenoid production, which also requires a cheap source of carbon. Thus, the ability of R. glutinis (ATCC 15125TM) to degrade and utilize soluble starch for the production of lipids has been assessed in this study. While glucose and fructose were readily consumed from the medium, starch was only slightly reduced in one treatment. The yield of fatty acid methyl esters (FAME) was graduated corresponding to the initial sugar contents, with the highest FAME yield (1.5 g·L-1) at the highest initial sugar content. In the treatment that contained starch as single carbon source, no FAME production was realized. Accordingly, if starchy wastewaters should be used for microbial cultivation with R. glutinis, an enzymatic or chemical pretreatment for starch hydrolysis should be applied, to increase the availability of this carbon source.

Share and Cite:

Schneider, T. , Rempp, T. , Graeff-Hönninger, S. , French, W. , Hernandez, R. and Claupein, W. (2013) Utilization of Soluble Starch by Oleaginous Red Yeast Rhodotorula glutinis. Journal of Sustainable Bioenergy Systems, 3, 57-63. doi: 10.4236/jsbs.2013.31007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] International Energy Agency, “Renewable Energy Outlook,” World Energy Outlook 2012, IEA Publications, Paris, 2012, p. 211.
[2] G. Knothe, “Introduction: What Is Biodiesel?” In: G. Knothe, J. van Gerpen and J. Krahl, Eds., The Biodiesel Handbook, AOCS Press, Urbana, 2005, pp. 9-11. doi:10.1201/9781439822357.ch1
[3] C. Ratledge, “Single Cell Oils—Have They a Biotechnological Future?” Trends in Biotechnology, Vol. 11, No. 7, 1993, pp. 278-284. doi:10.1016/0167-7799(93)90015-2
[4] C. Ratledge and Z. Cohen, “Microbial and Algal Oils: Do They Have a Future for Biodiesel or as Commodity Oils?” Lipid Technology, Vol. 20, No. 7, 2008, pp. 155-160. doi:10.1002/lite.200800044
[5] E. R. Easterling, W. T. French, R. Hernandez, M. Licha., “The Effect of Glycerol as Sole and Secondary Substrate on Growth and Fatty Acid Composition of Rhodotorula glutinis,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 356-361. doi:10.1016/j.biortech.2008.05.030
[6] R. M. Alvarez, B. Rodríguez, J. M. Romano, A. O. Diaz, D. Miró, et al., “Lipid Accumulation in Rhodotorula glutinis on Sugar Cane Molasses in Single-Stage Continuous Culture,” World Journal of Microbiology and Biotechnology, Vol. 8, No. 2, 1992, pp. 214-215. doi:10.1007/BF01195853
[7] X. Yu, Y. Zheng, K. Dorgan and S. Chen, “Oil Production by Oleaginous Yeasts Using the Hydrolysate from Pretreatment of Wheat Straw with Dilute Sulfuric Acid,” Bioresource Technology, Vol. 102, No. 10, 2011, pp. 6134-6140. doi:10.1016/j.biortech.2011.02.081
[8] Z. Chi, Y. Zhang, A. Jiang and Z. Chen, “Lipid Production by Culturing Oleaginous Yeast and Algae with Food Waste and Municipal Wastewater in an Integrated Process,” Applied Biochemistry and Biotechnology, Vol. 165, No. 2, 2011, pp. 442-453. doi:10.1007/s12010-011-9263-6
[9] P. Buzzini and A. Martini, “Production of Carotenoids by Strains of Rhodotorula glutinis Cultured in Raw Materials of Agro-Industrial Origin,” Bioresource Technology, Vol. 71, No. 1, 2000, pp. 41-44. doi:10.1016/S0960-8524(99)00056-5
[10] C. Malisorn and W. Suntornsuk, “Optimization of β-Carotene Production by Rhodotorula glutinis DM28 in Fermented Radish Brine,” Bioresource Technology, Vol. 99, No. 7, 2008, pp. 2281-2287. doi:10.1016/j.biortech.2007.05.019
[11] G. Frengova, E. Simova, K. Pavlova, B. Beshkova and D. Grigorova, “Formation of Carotenoids by Rhodotorula glutinis in Whey Ultrafiltrate,” Biotechnology and Bioengineering, Vol. 44, No. 8, 1994, pp. 888-894. doi:10.1002/bit.260440804
[12] T. Schneider, S. Graeff-H?nninger, W. T. French, R. Hernandez, W. Claupein and N. Merkt, “Microbial Lipids for Biodiesel Production and Carotenoids as Value Added By-Products—Screening of Industrial Wastewaters as Suitable Feedstock for Oleaginous Red Yeast Rhodotorula glutinis,” Proceedings of the 20th European Biomass Conference and Exhibition, Milan, 18-22 June 2012, pp. 1541-1546.
[13] R. Wild, S. Patil, M. Popovic, M. Zappi, S. Dufreche and R. Bajpaj, “Lipids from Lipomyces starkeyi,” Food Technology and Biotechnology, Vol. 48, No. 3, 2010, pp. 329-335.
[14] S. Papanikolaou, M. Galiotou-Panayotou, S. Fakas, M. Komaitis and G. Aggelis, “Lipid Production by Oleaginous Mucorales Cultivated on Renewable Carbon Sources,” European Journal of Lipid Science and Technology, Vol. 109, No. 11, 2007, pp. 1060-1070. doi:10.1002/ejlt.200700169
[15] S. D. Dyal and S. S. Narine, “Implications for the Use of Mortierella Fungi in the Industrial Production of Essential Fatty Acids,” Food Research International, Vol. 38, No. 4, 2005, pp. 445-467. doi:10.1016/j.foodres.2004.11.002
[16] M. C. Rubio, R. Runco and A. R. Navarro, “Invertase from a Strain of Rhodotorula glutinis,” Phytochemistry, Vol. 61, No. 6, 2001, pp. 605-609. doi:10.1016/S0031-9422(02)00336-9
[17] T. Schneider, S. Graeff-H?nninger, W. T. French, R. Hernandez, W. Claupein, W. E. Holmes and N. Merkt, “Screening of Industrial Wastewaters as Feedstock for the Microbial Production of Oils for Biodiesel Production and HighQuality Pigments,” Journal of Combustion, Vol. 2012, 2012, Article ID: 153410. doi:10.1155/2012/153410
[18] P. Buzzini, “Batch and Fed-Batch Carotenoid Production by Rhodotorula glutinis—Debaryomyces castellii CoCultures in Corn Syrup,” Journal of Applied Microbiology, Vol. 90, No. 5, 2001, pp. 843-847. doi:10.1046/j.1365-2672.2001.01319.x
[19] P. B. Bhosale and R. V. Gadre, “Production of β-Carotene by a Mutant of Rhodotorula glutinis,” Applied Microbiology and Biotechnology, Vol. 55, No. 4, 2001, pp. 423-427. doi:10.1007/s002530000570
[20] CBS-KNAW Fungal Biodiversity Centre Database, 2011. http://www.cbs.knaw.nl/collections/BioloMICS.aspx?Table=Yeasts%20species&Name=Rhodotorula%20glutinis%20var.%20glutinis&Fields=All&ExactMatch=T
[21] Y. Yeeh, “Rhodotorula,” In: R. Robinson, Ed., Encyclopedia of Food Microbiology, 1999, pp. 1900-1905. doi:10.1006/rwfm.1999.1340
[22] G. Zhang, W. T. French, R. Hernandez, E. Alley and M. Paraschivescu, “Effects of Furfural and Acetic Acid on Growth and Lipid Production from Glucose and Xylose by Rhodotorula glutinis,” Biomass and Bioenergy, Vol. 35, No. 1, 2011, pp. 734-740. doi:10.1016/j.biombioe.2010.10.009
[23] E. G. Bligh and W. J. Dyer, “A Rapid Method of Total Lipid Extraction and Purification,” Canadian Journal of Biochemistry and Physiology, Vol. 37, No. 8, 1959, pp. 911-917. doi:10.1139/o59-099
[24] W. Verstraete, J. P. Voets and J. Mottar, “Competitive Ability of Amylolytic Bacteria in Activated Sludge,” Archives of Microbiology, Vol. 104, No. 1, 1975, pp. 279-283. doi:10.1007/BF00447337
[25] B. Cheirslip, W. Suwannarat and R. Niyomdecha, “Mixed Culture of Oleaginous Yeast Rhodotorula glutinis and Microalgae Chlorella vulgaris for Lipid Production from Industrail Wastes and Its Use as Biodiesel Feedstock,” New Biotechnology, Vol. 28, No. 4, 2011, pp. 362-368. doi:10.1016/j.nbt.2011.01.004
[26] C. Saenge, B. Cheirslip, T. T. Suksaroge and T. Bourtoom, “Efficient Concomitant Production of Lipids and Carotenoids by Oleaginous Red Yeast Rhodotorula glutinis Cultured in Palm Oil Mill Effluent and Application of Lipids for Biodiesel Production,” Biotechnology and Bioprocess Engineering, Vol. 16, No. 1, 2011, pp. 23-33. doi:10.1007/s12257-010-0083-2
[27] C. Dai, J. Tao, F. Xie, Y.-J. Dai and M. Zhao, “Biodiesel Generation from Oleaginous Yeast Rhodotorula glutinis with Xylose Assimilating Capacity,” African Journal of Biotechnology, Vol. 6, No. 18, 2007, pp. 2130-2134.
[28] V. Perrier, E. Dubreucq and P. Galzy, “Fatty Acid and Carotenoid Composition of Rhodotorula strains,” Archives of Microbiology, Vol. 164, No. 3, 1995, pp. 173-179. doi:10.1007/BF02529968
[29] G. Knothe, “Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters,” Fuel Processing Technology, Vol. 86, No. 10, 2005, pp. 1059-1070. doi:10.1016/j.fuproc.2004.11.002

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.