Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield

DOI: 10.4236/jsbs.2013.31002   PDF   HTML   XML   6,796 Downloads   13,270 Views   Citations


Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v); resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.

Share and Cite:

Nomanbhay, S. , Hussain, R. and Palanisamy, K. (2013) Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. Journal of Sustainable Bioenergy Systems, 3, 7-17. doi: 10.4236/jsbs.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden and G. Zacchi, “Bio-Ethanol—the Fuel of Tomorrow from the Residues of Today,” Trends in Biotechnology, Vol. 24, No. 12, 2006, pp. 549-556. doi:10.1016/j.tibtech.2006.10.004
[2] M. Balat, H. Balat and C. Oz, “Progress in Bio Ethanol Processing,” Progress in Energy and Combustion Science, Vol. 34, No. 5, 2008, pp. 551-573. doi:10.1016/j.pecs.2007.11.001
[3] Y. Sun and J. Cheng, “Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review,” Bioresource Technology, Vol. 83, No. 1, 2002, pp. 1-11. doi:10.1016/S0960-8524(01)00212-7
[4] N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple and M. Ladisch, “Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass,” Bioresource Technology, Vol. 96, No. 6, 2005, pp. 673-686. doi:10.1016/j.biortech.2004.06.025
[5] S. Kim and B. E. Dale, “Environmental Aspects of Ethanol Derived from No-tilled Corn Grain: Non Renewable Energy Consumption and Greenhouse Gas Emissions,” Biomass and Bioenergy, Vol. 28, No. 5, 2005, pp. 475-489. doi:10.1016/j.biombioe.2004.11.005
[6] K. A. Gray, L. Zhao and M. Emptage, “Bioethanol,” Current Opinion in Chemical Biology, Vol. 10, No. 4, 2006, pp. 141-146. doi:10.1016/j.cbpa.2006.02.035
[7] T. L. Chew and S. Bhatia, “Catalytic Processes towards the Production of Biofuels in a Palm Oil and Oil Palm Biomass-Based Biorefinery,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 7911-7922. doi:10.1016/j.biortech.2008.03.009
[8] A. Yahya, P. S. Chong, T. A. Ishola and H. Suryanto, “Effect of Adding Palm Oil Mill Decanter Cake Slurry with Regular Turning Operation on the Composting Process and Quality of Compost from Oil Palm Empty Fruit Bunches,” Bioresource Technology, Vol. 101, No. 22, 2010, pp. 8736-8741. doi:10.1016/j.biortech.2010.05.073
[9] M. Z. Alam, A. M. Suleyman, F. M. Mariatul and R. Wahid, “Activated Carbons Derived from Oil Palm EmptyFruit Bunches,” Journal of Environmental Sciences, Vol. 19, No. 1, 2007, pp. 103-108. doi:10.1016/S1001-0742(07)60017-5
[10] M. N. Bari, M. Z. Alam, A. M. Suleyman, P. Jamal and A. A. Mamun, “Improvement of Production of Citric Acid from Oil Palm Empty Fruit Bunches: Optimization of Media by Statistical Experimental Designs,” Bioresource Technology, Vol. 100, No. 12, 2009, pp. 3113-3120. doi:10.1016/j.biortech.2009.01.005
[11] O. Tomoko, M. Nakanishi, Y. Fukuda and K. Matsumoto, “Gasification of Oil Palm Residues (Empty Fruit Bunch) in an Entrained-Flow Gasifier,” Fuel, Vol. 104, 2013, pp. 28-35. doi:10.1016/j.fuel.2010.08.028
[12] Y. Syafwina, T. Honda, M. Watanabe and M. Kuwahara, “Pretreatment of Oil Palm Empty Fruit Bunch by WhiteRot Fungi for Enzymatic Saccharification,” Wood Research, Vol. 89, 2002, pp. 19-20.
[13] B. Yang and C. E. Wyman, “Pre-Treatment: The Key to Unlocking Low-Cost Cellulosic Ethanol, Biofuels,” Bioprod, Bioref, Vol. 2, No. 1, 2008, pp. 26-40. doi:10.1002/bbb.49
[14] S. Zhu, Y. Wu, Z. Yu, Q. Chen, G. Wu, F. Yu, C. Wang and S. Jin, “Microwave Assisted Alkali Pre-treatment of Wheat Straw and Its Enzymatic Hydrolysis,” Process Biochemistry, Vol. 94, No. 3, 2006, pp. 437-442.
[15] Y. Zhao, Y. Wang, J. Y. Zhu, A. Ragauskas and Y. Deng, “Enhanced Enzymatic Hydrolysis of Spruce by Alkaline Pretreatment at Low Temperature,” Biotechnology and Bioengineering, Vol. 99, No. 6, 2008, pp. 1320-1328. doi:10.1002/bit.21712
[16] P. Alvira, E. Tomas-Pejo, M. Ballesteros and M. J. Negro, “Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review,” Bioresource Technology, Vol. 101, No. 13, 2010, pp. 4851-4861. doi:10.1016/j.biortech.2009.11.093
[17] P. Kumar, D. M. Barrett, M. J. Delwiche and P. Stroeve, “Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production,” Industrial & Engineering Chemistry Research, Vol. 48, No. 8, 2009, pp. 3713-3729. doi:10.1021/ie801542g
[18] C. E. Wyman, “Handbook on Bio Ethanol: Production and Utilization in Applied Energy Technology,” Series Taylor and Francis, Washington DC, 1996.
[19] A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 1018. doi:10.1016/j.biortech.2008.05.027
[20] X. Zhao, K. Cheng and D. Liu, “Organosolv Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis,” Applied Microbiology and Biotechnology, Vol. 82, No. 5, 2009, pp. 815-827. doi:10.1007/s00253-009-1883-1
[21] G. A. Aita and M. Kim, “Pretreatment Technologies for the Conversion of Lignocellulosic Materials to Bio ethanol Sustainability of the Sugar and Sugar-Ethanol Industries,” American Chemical Society Publications, New Orleans, 2010, pp. 117-145.
[22] M. J. Taherzadeh and K. Karimi, “Acid-Based Hydrolysis Process for Ethanol from Lignocellulosic Materials: A Review,” Bioresources, Vol. 2, No. 3, 2007, pp. 472-499.
[23] A. K. Datta, “Fundamentals of Heat and Moisture Transport for Microwaveable Food Product and Process Development,” In: A. K. Datta and R. C. Anantheswaran, Eds., Handbook of Microwave Technology for Food Applications, Marcel Dekker Inc., New York, 2001.
[24] Z. H. Hu and Z. Y. Wen, “Enhancing Enzymatic Digestibility of Switchgrass by Microwave-Assisted Alkali Pretreatment,” Biochemical Engineering Journal, Vol. 38, No. 3, 2008, pp. 369-378. doi:10.1016/j.bej.2007.08.001
[25] H. Ooshima, K. Aso, Y. Harano and T. Yamamoto, “Microwave Treatment of Cellulosic Materials for Their Enzymatic Hydrolysis,” Biotechnology Letters, Vol. 6, No. 5, 1984, pp. 289-294. doi:10.1007/BF00129056
[26] J. Xiong, J. Ye, W. Z. Liang and P. M. Fan, “Influence of Microwave on the Ultrastructure of Cellulose I,” Journal of South China University of Technology, Vol. 28, No. 3, 2000, pp. 84-89.
[27] J. Azuma, F. Tanaka and T. Koshijima, “Enhancement of Enzymatic Susceptibility of Lignocellulosic Wastes by Microwave Irradiation,” Journal of Fermentation Technology, Vol. 62, No. 4, 1984, pp. 377-384.
[28] T. Palav and K. Seetharaman, “Impact of Microwave Heating on the Physico-Chemical Properties of a StarchWater Model System,” Carbohydrate Polymers, Vol. 67, No. 4, 2007, pp. 596-604. doi:10.1016/j.carbpol.2006.07.006
[29] P. Binod, K. Satyanagalakshimi, R. Sindhu, K. Usha Janu, R. K. Sukumaran and A. Pandey, “Short Duration Microwave Assisted Pretreatment Enhances the Enzymatic Saccharification and Fermentable Sugar Yield from Sugarcane Bagasse,” Renewable Energy, Vol. 37, No. 12, 2012, pp. 109-116. doi:10.1016/j.renene.2011.06.007
[30] N. E. Leadbeater, L. M. Stencel and E. C. Wood, “Probing the Effects of Microwave Irradiation on EnzymeCatalysed Organic Transformations: The Case of LipaseCatalysed Transesterification Reactions,” Organic and Biomolecular Chemistry, Vol. 5, No. 7, 2007, pp. 1052-1055. doi:10.1039/b617544a
[31] G. D. Yadav and A. D. Sajgure, “Synergism of Microwave Irradiation and Enzyme Catalysis in Synthesis of Isoniazid,” Journal of Chemical Technology & Biotechnology, Vol. 82, No. 11, 2007, pp. 964-970. doi:10.1002/jctb.1738
[32] I. Roy and M. Gupta, “Applications of Microwaves in Biological Sciences,” Current Science, Vol. 85, No. 12, 2003, pp. 1685-1693.
[33] G. D. Yadav and P. Lathi, “Microwave Assisted Enzyme Catalysis for Synthesis of n-Butyl Dipheyl Methyl Mercapto Acetate in Non-Aqueous Media,” Clean Technologies and Environmental Policy, Vol. 9, No. 4, 2007, pp. 281-287. doi:10.1007/s10098-006-0082-3
[34] N. Saifuddin, A. Z. Raziah and H. N. Farah, “Production of Biodiesel from High Acid Value Waste Cooking Oil using an Optimized Lipase Enzyme/Acid Catalyzed Hybrid Process,” E-Journal of Chemistry, Vol. 6, No. S1, 2009, pp. S485-S495. doi:10.1155/2009/801756
[35] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, “Determination of Structural Carbohydrates and Lignin in Biomass,” National Renewable Energy Laboratory, Golden, 2008. http://www.nrel.gov/biomass/pdfs/42618.pdf
[36] ASTM (American Society for Testing and Materials), “Method of Test for Holocellulose in Wood,” 1978. http://www.astm.org/Standards/D1104.htm.
[37] D. D. Y. Ryu and M. Mandels, “Cellulases-Biosynthesis and Applications,” Enzyme and Microbial Technology, Vol. 2, No. 2, 1980, pp. 91-102. doi:10.1016/0141-0229(80)90063-0
[38] G. M. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Analytical Chemistry, Vol. 31, No. 3, 1959, pp. 426-428. doi:10.1021/ac60147a030
[39] R. A. Silverstein, Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette and J. Osborne, “A Comparison of Chemical Pretreatment Methods for Improving Saccharification of Cotton Stalks,” Bioresource Technology, Vol. 98, No. 16, 2007, pp. 3000-3011. doi:10.1016/j.biortech.2006.10.022
[40] D. A. Salvi, G. M. Aita, D. Robert and V. Bazan, “Ethanol Production from Sorghum by a Dilute Ammonia Pretreatment,” Journal of Industrial Microbiology & Biotechnology, Vol. 37, No. 1, 2009, pp. 27-34. doi:10.1007/s10295-009-0645-5
[41] C. Chen, D. Boldor, G. Aita and M. Walker, “Ethanol Production from Sorghum by a Microwave-Assisted Dilute Ammonia Pretreatment,” Bioresource Technology, Vol. 110, 2012, pp. 190-197. doi:10.1016/j.biortech.2012.01.021
[42] Z. Hu, Y. Wang and Z. Wen, “Alkali (NaOH) Pretreatment of Switchgrass by Radio Frequency-Based Dielectric Heating,” Applied Biochemistry and Biotechnology, Vol. 148, No. 1-3, 2008, pp. 71-81. doi:10.1007/s12010-007-8083-1
[43] C. Li, B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons and S. Singh, “Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification,” Bioresource Technology, Vol. 101, No. 13, 2010, pp. 4900-4906. doi:10.1016/j.biortech.2009.10.066
[44] J. Xu, J. J. Cheng, R. R. Sharma-Shivappa and J. C. Burns, “Sodium Hydroxide Pretreatment of Switch Grass for Ethanol Production,” Energy Fuels, Vol. 24, No. 3, 2010, pp. 2113-2119. doi:10.1021/ef9014718
[45] D. R. Keshwani and J. J. Cheng, “Microwave-Based Alkali Pretreatment of Switchgrass and Coastal Bermuda Grass for Bio ethanol Production,” Biotechnology Progress, Vol. 26, No. 3, 2009, pp. 644-652. doi:10.1002/btpr.371
[46] Z. Wang, D. R. Keshwani, A. P. Redding and J. J. Cheng, “Sodium Hydroxide Pretreatment and Enzymatic Hydrolysis of Castal Bermuda Grass,” Bioresource Technology, Vol. 101, No. 10, 2010, pp. 3583-3585. doi:10.1016/j.biortech.2009.12.097
[47] S. A. Galema, “Microwave Chemistry,” Chemical Society Reviews, Vol. 26, No. 3, 1997, pp. 233-238. doi:10.1039/cs9972600233
[48] V. Sridar, “Microwave Radiation as a Catalyst for Chemical Reactions,” Current Science, Vol. 74, No. 5, 1998, pp. 446-450.
[49] National Institute of Standards and Technology, “Standard Reference Database 101,” 2006. http://srdata.nist.gov/cccbdb
[50] L. Wang, G. Han and Y. Zhang, “Comparative Study of Composition, Structure and Properties of Apocynum Venetum Fibers under Different Pretreatments,” Carbohydrate Polymers, Vol. 69, No. 2, 2007, pp. 391-397. doi:10.1016/j.carbpol.2006.12.028
[51] K. K. Pandey, “Study of the Effect of Photo-Irradiation on the Surface Chemistry of Wood,” Polymer Degradation and Stability, Vol. 90, No. 1, 2005, pp. 9-20. doi:10.1016/j.polymdegradstab.2005.02.009
[52] D. Fengel and G. Wegener, “Wood-Chemistry, Ultrastructure Reactions,” Kessel Verlag, Remagen, 2003.
[53] K. K. Pandey and A. J. Pitman, “Examination of Lignin Content in a Softwood and a Hard Wood Decayed by a Brown-Rot Fungus with Acetyl Bromide Method and Fourier Transform Infrared Spectroscopy,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 42, No. 10, 2004, pp. 2340-2346. doi:10.1002/pola.20071
[54] Y. Sun, L. Lin, H. B. Deng, J. Z. Li, B. H. He and R. C. Sun, “Structural Changes of Bamboo Cellulose in Formic Acid,” Bioresources, Vol. 3, No. 2, 2008, pp. 297-315.
[55] N. Saifuddin and K. H. Chua, “Production of Ethyl Ester (Biodiesel) from used Frying Oil: Optimization of Transesterification Process using Microwave Irradiation,” Malaysian Journal of Chemistry, Vol. 6, No. 1, 2004, pp. 77-82.
[56] J. Hernando, P. Leton, M. P. Matia, J. L. Novella and J. Alvarez-Builla, “Biodiesel and FAME Synthesis Assisted by Microwaves: Homogeneous Batch and Flow Processes,” Fuel, Vol. 86, No. 10-11, 2007, pp. 1641-1644. doi:10.1016/j.fuel.2006.11.003
[57] N. Saifuddin, L. W. Zhan and K. K. X. Ning, “Heat-Modeling of Microwave Assisted Epoxidation of Palm Acid Oil,” American Journal of Applied Sciences, Vol. 8, No. 3, 2011, pp. 217-229. doi:10.3844/ajassp.2011.217.229
[58] N. Kuhnert, “Microwave-Assisted Reactions in Organic Synthesis—Are There Any Non thermal Microwave Effects? Angew,” Angewandte Chemie International Edition, Vol. 41, No. 11, 2002, pp. 1863-1866. doi:10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L
[59] J. H. Booske, R. F. Cooper and S. A. Freeman, “Microwave Enhanced Reaction Kinetics in Ceramics,” Materials Research Innovations, Vol. 1, No. 2, 1997, pp. 77-84. doi:10.1007/s100190050024
[60] A. De la Hoz, A. Diaz-Ortiz and A. Moreno, “Selectivity in Organic Synthesis under Microwave Irradiation,” Current Organic Chemistry, Vol. 8, No. 10, 2004, pp. 903-918. doi:10.2174/1385272043370429
[61] Y. Asakuma, Y. Ogawa, K. Maeda, K. Fukui and H. Kuramochi, “Effects of Microwave Irradiation on Triglyceride Transesterification: Experimental and Theoretical Studies,” Biochemical Engineering Journal, Vol. 58-59, No. 15, 2011, pp. 20-24. doi:10.1016/j.bej.2011.08.003

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.