Share This Article:

Numerical Solution of Singularly Perturbed Two-Point Boundary Value Problem via Liouville-Green Transform

DOI: 10.4236/ajcm.2013.31001    5,113 Downloads   9,989 Views   Citations

ABSTRACT

In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Mishra and S. Saini, "Numerical Solution of Singularly Perturbed Two-Point Boundary Value Problem via Liouville-Green Transform," American Journal of Computational Mathematics, Vol. 3 No. 1, 2013, pp. 1-5. doi: 10.4236/ajcm.2013.31001.

References

[1] C. M. Bender and S. A. Orszag, “Advanced Mathematical Methods for Scientists and Engineers,” McGraw-Hill, New York, 1978.
[2] J. Kevorkian and J. D. Cole, “Perturbation Methods in Applied Mathematics,” Springer-Verlag, New York, 1981. doi:10.1007/978-1-4757-4213-8
[3] R. E. O’Malley, “Singular Perturbation Methods for Ordinary Differential Equations,” Springer-Verlag, New York, 1991. doi:10.1007/978-1-4612-0977-5
[4] J. J. H. Miller, E. O’Riordan and G. I. Shishkin, “Fitted Numerical Methods for Singular Perturbation Problems,” World Scientific, Singapore City, 1996.
[5] A. H. Nayfeh, “Perturbation Methods,” Wiley, New York, 1973.
[6] M. K. Kadalbajoo and Y. N. Reddy, “Approximate Method for the Numerical Solution of Singular Perturbation Problems,” Applied Mathematics and Computation, Vol. 21, No. 3, 1987, pp. 185-199. doi:10.1016/0096-3003(87)90001-4
[7] M. Kumar, H. K. Mishra and P. Singh, “Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems Using Initial Value Method,” Journal of Applied Mathematics and Computation, Vol. 29, No. 1-2, 2009, pp. 229-246. doi:10.1007/s12190-008-0127-3
[8] M. Kumar, H. K. Mishra and P. Singh, “Initial Value Technique for Self-Adjoint Singular Perturbation Boundary Value Problems,” Computational Mathematics and Modeling, Vol. 20, No. 2, 2009, pp. 207-217. doi:10.1007/s10598-009-9029-y
[9] Z. C. Lin and M. R. Zhou, “Singular Perturbations in Applied Mathematics,” Jiangsu Education Press, Nanjing, 1995.
[10] H. K. Mishra, “An Order Reduction Method of Second Order Singular Perturbation Boundary Value Problems,” Jnanabha, Vol. 40, 2010, pp. 49-62.
[11] Y. N. Reddy and P. Pramod Chakravarthy, “Method of Reduction of Order for Solving Singularly Perturbed Two-Point Boundary Value Problems,” Applied Mathematics and Computation, Vol. 136, No. 1, 2003, pp. 27-45. doi:10.1016/S0096-3003(02)00015-2
[12] S. M. Roberts, “A Boundary-Value Technique for Singular Perturbation Problems,” Journal of Mathematical Analysis and Applications, Vol. 87, No. 2, 1982, pp. 489-503. doi:10.1016/0022-247X(82)90139-1
[13] S. M. Roberts, “The Analytical and Approximate Solutions of εy″=yy′ ,” Journal of Mathematical Analysis and Applications, Vol. 97, No. 1, 1983, pp.245-265. doi:10.1016/0022-247X(83)90249-4
[14] S. M. Roberts, “Solution of εy″+yy′-y= 0 by a Non-Asymptotic Method,” Journal of Optimization Theory and Applications, Vol. 44, No. 2, 1984, pp. 303-332. doi:10.1007/BF00935440
[15] Z. Du and Z. Bai, “Asymptotic Solution for a Second-Order Differential Equation with Three-Point Boundary Conditions,” Applied Mathematics and Computation, Vol. 186, No. 1, 2007, pp. 469-473. doi:10.1016/j.amc.2006.07.110
[16] Z. Du and L. Kong, “Asymptotic Solution of Singularly Perturbed Second-Order Differential Equations and Application to Multi-Point Boundary Value Problems,” Applied Mathematics Letters, Vol. 23, No. 9, 2010, pp. 980-983. doi:10.1016/j.aml.2010.04.021

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.