Influence of Plasmon Excitations in Au Nanoparticles upon Fluorescence and Photostability of Photosynthetic Complexes


Fluorescence spectroscopy is applied to study the influence of plasmon excitations in spherical Au nanoparticles on the optical properties of chlorophyll-containing light-harvesting complexes. The separation between the two nanostructures is controlled via silica layer with varied thickness. We observe strong increase of the emission intensity for a 12- nm-thick spacer and the increase is accompanied with shortening of the fluorescence lifetime, which allows us to separate contributions of absorption and emission rate enhancement. At the same time we find an increase of photobleaching. These findings are interpreted as a result of spectral overlap between plasmon resonance and chlorophyll fluorescence.

Share and Cite:

B. Krajnik, N. Czechowski, D. Piatkowski, S. Mackowski, E. Hofmann, S. Pichler and W. Heiss, "Influence of Plasmon Excitations in Au Nanoparticles upon Fluorescence and Photostability of Photosynthetic Complexes," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 1-7. doi: 10.4236/opj.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Lakowicz, “Plasmonics in Biology and Plasmon-Controlled Fluorescence,” Plasmonics, Vol. 1, No. 1, 2006, pp. 5-33. doi:10.1007/s11468-005-9002-3
[2] J. Malicka, I. Gryczynski, C. D. Geddes and J. R. Lakowicz, “Metal-Enhanced Emission from Indocyanine green: A Newapproach to in Vivo Imaging,” Journal of Biomedical Optics, Vol. 8, No. 3, 2003, pp. 472-478. doi:10.1117/1.1578643
[3] A. Hartschuh, H. N. Pedrosa, L. Novotny and T. D. Krauss, “Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes,” Science, Vol. 301, No. 5638, 2003, pp. 1354-1356. doi:10.1126/science.1087118
[4] J. Lee, P. Hernandez, J. Lee, A. Govorov and N. Kotov, “Exciton-Plasmon Interactions in Molecular Spring Assemblies of Nanowires and Wavelength-Based Protein Detection,” Nature Materials, Vol. 6, No. 4, 2007, pp. 291-295. doi:10.1038/nmat1869
[5] A. Polman and H. A. Atwater, “Photonic Design Princi ples for Ultrahigh-Efficiency Photovoltaics,” Nature Materials, Vol. 11, No. 3, 2012, pp. 174-177. doi:10.1038/nmat3263
[6] E. Prodan, P. Nordlander and N. J. Halas, “Electronic Structure and Optical Properties of Gold Nanoshells,” Nano Letters, Vol. 3, No. 10, 2003, pp. 1411-1415. doi:10.1021/nl034594q
[7] S. Eustis and M. El-Sayed, “Aspect Ratio Dependence of the Enhanced Fluorescence Intensity of Gold Nanorods: Experimental and Simulationstudy,” The Journal of Physical Chemistry B, Vol. 109, No. 34, 2005, pp. 16350-16356. doi:10.1021/jp052951a
[8] P. Anger, P. Bharadwaj and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Physical Review Letters, Vol. 96, No. 11, 2006, Article ID: 113002. doi:10.1103/PhysRevLett.96.113002
[9] L. Bujak, N. Czechowski, D. Piatkowski, R. Litvin, S. Mackowski, T. H. P. Brotosudarmo, R. J. Cogdell, S. Pichler and W. Heiss, “Fluorescenceenhancement of Light-Harvesting Complex 2 from Purple Bacteria Coupled to Spherical Gold Nanoparticles,” Applied Physics Letters, Vol. 99, No. 17, 2011, Article ID: 173701. doi:10.1063/1.3648113
[10] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik and R. R. Naik, “Exciton—PlasmonInteraction and Hybrid Excitons in Semi conductor—Metal Nanoparticle Assemblies,” Nano Letters, Vol. 6, No. 5, 2006, pp. 984-994. doi:10.1021/nl0602140
[11] M. Olejnik, L. Bujak and S. Mackowski, “Plasmonic Molecular Nanohybrids-Spectral Dependence of Fluorescence Quenching,” International Journal of Molecular Sciences, Vol. 13, No. 1, 2012, pp. 1018-1028. doi:10.3390/ijms13011018
[12] K. Aslan, M. Wu, J. R. Lakowicz and C. D. Geddes, “Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms,” Journal of the American Chemical Society, Vol. 129, No. 6, 2007, pp. 1524-1525. doi:10.1021/ja0680820
[13] K. Ray, R. Badugu and J. R. Lakowicz, “Metal-Enhanced Fluorescence from CdTe Nanocrystals: A Single-Molecule Fluorescence Study,” Journal of the American Chemical Society, Vol. 128, No. 28, 2006, pp. 8998-8999. doi:10.1021/ja061762i
[14] S. Mackowski, S. Wormke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer and C. Brauchle, “Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes,” Nano Letters, Vol. 8, No. 2, 2007, pp. 558-564. doi:10.1021/nl072854o
[15] D. J. Miller, J. Catmull, R. Puskeiler, H. Tweedale, F. P. Sharples and R. G. Hiller, “Reconstitution of the Peridinin-Chlorophyll a Protein (PCP): Evidence for Functional Flexibility in Chlorophyll Binding,” Photosynthesis Research, Vol. 86, No. 1, 2005, pp. 229-240. doi:10.1007/s11120-005-2067-1
[16] J. Roither, “Optical Applications of Colloidal Nanocrys tals,” PhD Thesis, Johannes Kepler University, Linz, 2009.
[17] B. Krajnik, T. Schulte, D. Pi?tkowski, N. Czechowski, E. Hofmann and S. Mackowski, “SIL-Based Confocal Fluorescence Microscope for Investigating Individual Nanostructures,” Central European Journal of Physics, Vol. 9, No. 2, 2011, pp. 293-299. doi:10.2478/s11534-010-0098-5
[18] T. Schulte, S. Johanning and E. Hofmann, “Structure and Function of Native and Refolded Peridinin-Chlorophyll Proteins from Dinoflagellates,” European Journal of Cell Biology, Vol. 89, No. 12, 2010, pp. 990-997. doi:10.1016/j.ejcb.2010.08.004
[19] F. J. Kleima, E. Hofmann, B. Gobets, I. H. M. van Stok kum, R. van Grondelle, K. Diederichs and H. van Amerongen, “F?rster Excitation Energy Transfer in Perid inin-Chlorophyll-a-Protein,” Biophysical Journal, Vol. 78, No. 1, 2000, pp. 344-353. doi:10.1016/S0006-3495(00)76597-0
[20] S. W?rmke, S. Mackowski, T. H. P. Brotosudarmo, C. Jung, A. Zumbusch, M. Ehrl, H. Scheer, E. Hofmann, R. G. Hiller and C. Br?uchle, “Monitoring Fluorescence of Individual Chromophores in Peridinin-Chlorophyll-Protein Complex Using Single Molecules Pectroscopy,” Biochimica et Biophysica Acta, Vol. 1767, No. 7, 2007, pp. 956-964. doi:10.1016/j.bbabio.2007.05.004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.