Spectral footprint of Botrytis cinerea, a novel way for fungal characterization


Botrytis cinerea affects plant yield and quality. Many Botrytis species are morphologically similar leading to difficulty in pathogen identification. Spectroscopy can be used to identify pathogenic fungi. This study describes a novel method for fungal characterization. Here, we determined the spectral signatures of different B. cinerea isolates as well as various fungal genera. A unique spectral pattern was investigated at both genus and isolate level. The short wave infrared II (2055 - 2315 nm) provided the best discrimination between the fungal samples observed. Moreover, the spectral analysis was performed on non-transformed data and investigated significant differences among fungal genera as well as B. cinerea isolates, while the results investigated high similarity among replicates of the same isolate of B. cinerea. The results of each spectral test were obtained reproducibly without an expensive cost consumable during sample preparation and measurements. This innovative approach would allow us to identify, discriminate and classify fungi rapidly and inexpensively at the genus, species and isolate level.

Share and Cite:

Abdel Wahab, H. (Aboelghar, M. and Abdel Wahab, H. ,2013) Spectral footprint of Botrytis cinerea, a novel way for fungal characterization. Advances in Bioscience and Biotechnology, 4, 374-382. doi: 10.4236/abb.2013.43050.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hutson, R.A. and Mansfield, J.W. (1980) A genetical approach to the analysis of mechanisms of pathogenicity in Botrytis/Vicia faba interaction. Physiological Plant Pathology, 17, 309-317.
[2] Elad, Y., Williamson, B., Tudzynski, P. and Delen, N. (2007) Botrytis spp. and diseases they cause in agricultural systems—An introduction. Botrytis: Biology, Pathology and Control, Springer, Netherlands, 1-8. doi:10.1007/978-1-4020-2626-3_1
[3] Nielsen, K., Justesen, A.F., Jensen, D.F. and Yohalem, D.S. (2001) Universally primed polymerase chain reaction alleles and internal transcribed spacer restriction fragment length polymorphisms distinguish two subgroups in Botrytis aclada distinct from B. byssoidea. Phytopathology, 91, 527-533. doi:10.1094/PHYTO.2001.91.6.527
[4] Dufresne, M., Hua-Van, A., Abd el Wahab, H., Ben M’Barek, S., Vasnier, C., Teysset, L., Kema, G.H.J. and Daboussi, M.J. (2007) Transposition of a fungal MITE through the action of a Tc1-like transposase. Genetics, 175, 441-445. doi:10.1534/genetics.106.064360
[5] Lopez-Berges, M.S., Di Pietro, A., Daboussi, M.J., Abdel Wahab, H., Vasnier, C., Roncero, I.G., Dufresne, M. and Hera, C. (2009) Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large-scale transposon tagging. Molecular Plant Pathology, 10, 95-107. doi:10.1111/j.1364-3703.2008.00512.x
[6] Abdel Wahab, H., Aly, N.A.H. and Ali, M.K. (2010) Improving detection means for strawberry gray mold caused by Botrytis cinerea in Egypt. Egyptian Journal of Phytopathology, 38, 107-119.
[7] Diolez, A., Marches, F., Fortini, D. and Brygoo, Y. (1995) Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Applied and Environmental Microbiology, 61, 103-108.
[8] Giraud, T., Fortini, D., Levis, C., Lamarque, C., Leroux, P., LoBuglio, K. and Brygoo Y. (1999) Two sibling spe- cies of the Botrytis cinerea complex, transposa and vacu- ma, are found in sympatry on numerous host plants. Phytopathology, 89, 967-973. doi:10.1094/PHYTO.1999.89.10.967
[9] Muňoz, G., Hinrichsen, P., Brygoo, Y. and Griaud, T. (2002) Genetic characterization of Botrytis cinerea populations in Chile. Mycological Research, 106, 594-601. doi:10.1017/S0953756202005981
[10] Schott, J.R. (2007) REMOTE sensing: The image chain approach. 2nd Edition, Oxford University Press, Oxford, 1.
[11] Schowengerdt, R.A. (2007) REMOTE sensing: Models and methods for image processing. 3rd Edition, Academic Press, Waltham, 2.
[12] Gates, D.M., Keegan, H.J., Schleter, J.C. and Weidner, V.R. (1965) Spectral properties of plants. Applied Optics, 9, 545-552.
[13] Hoffer, R.M. (1978) Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data. In Swain, P.H. and Davis, S.M. (Eds.), Remote Sensing: The Quantitative Approach, McGraw- Hill Book Company, New York, 227-289.
[14] Kokaly, R.F. (2001) Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 75, 153-161. doi:10.1016/S0034-4257(00)00163-2
[15] McDonald, M.S. (2003) Photobiology of higher plants. Wiley, Chichester, 354.
[16] Delalieux, S., Van Aardt, J., Keulemans, W., Schrevens, E. and Coppin, P. (2007) Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. European Journal of Agronomy, 27, 130- 143. doi:10.1016/j.eja.2007.02.005
[17] Michael, P.G., Richard, M.J. and Paul V.Z. (2010) DE- TECTING Sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. Journal of Virological Methods, 167, 140-145. doi:10.1016/j.jviromet.2010.03.024
[18] Thenkabail, P.S., Smith, R.B. and Pauw, E.D. (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158-182. doi:10.1016/S0034-4257(99)00067-X
[19] Gitelson, A.A. (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165-173. doi:10.1078/0176-1617-01176
[20] Gitelson, A.A., Vina, A., Verma, S.B., Rundquist, D.C., Arkebauer, T.J., Keydan, G., Leavitt, B., Ciganda, V., Burba, G.G. and Suyker, A.E. (2006) Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research, 111. doi:10.1029/2005JD006017
[21] Paul Jr., J.P., Jerry, C.R., Jerry, L.H. and Galen, F.H. (2003) The agricultural research service’s remote sensing program: An example of interagency collaboration. Photogrammetric Engineering and Remote Sensing, 69, 615- 618.
[22] Oberreuter, H., Seiler, H. and Scherer, S. (2002) Identification of coryneform bacteria and related taxa by Fourier transform infrared spectroscopy. International Journal of Systematic and Evolutionary Microbiolology, 52, 91-100.
[23] Wenning, M., Seiler, H. and Scherer, S. (2002) Fourier- transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Applied and Environ- mental Microbiology, 68, 4717-4721. doi:10.1128/AEM.68.10.4717-4721.2002
[24] Rebuffo, C.A., Schmitt, J., Wenning, M., von Stetten, F. and Scherer, S. (2006) Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy. Applied and Environmental Microbiology, 72, 994-1000. doi:10.1128/AEM.72.2.994-1000.2006
[25] Beekes, M., Lasch, P. and Naumann, D. (2007) Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology, 123, 305-319. doi:10.1016/j.vetmic.2007.04.010
[26] Rebuffo-Scheer, C.A., Schmitt, J. and Scherer, S. (2007) Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-trans- formed infrared spectra. Applied Environmental Microbiology, 73, 1036-1040. doi:10.1128/AEM.02004-06
[27] Kuhm, A., Sutter, D., Felleisen, R. and Rau, J. (2009) Identification of Yersinia enterocolitica at the species and subspecies levels by Fourier transform infrared spectroscopy. Applied and Environmental Microbiology, 75, 5809- 5813. doi:10.1128/AEM.00206-09
[28] Wortberg, F., Nardy, E., Contzen, M. and Rau, J. (2012) Identification of Yersinia ruckeri from diseased salmonid fish by Fourier transform infrared spectroscopy. Journal of Fish Diseases, 35, 1-10. doi:10.1111/j.1365-2761.2011.01317.x
[29] Naumann, A. (2009) A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. Analyst, 134, 1215-1223. doi:10.1039/b821286d
[30] Samuels, A.C., Snyder, A.P., Emge, D.K., Amant, D., Minter, J., Campbell, M. and Tripathi A. (2009) Classification of select category A and B bacteria by Fourier transform infrared spectroscopy. Applied Spectroscopy, 63, 14-24. doi:10.1366/000370209787169867
[31] Santos, C., Fraga, M.E., Kozakiewicz, Z. and Lima, N. (2010) Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Research in Microbiology, 161, 168- 175. doi:10.1016/j.resmic.2009.12.007
[32] Salman, A., Pomerantz, A., Tsror, L., Lapidot, I., Zwielly, A., Moreh, R., Mordechai, S. and Huleihel, M. (2011) Dis- tinction of Fusarium oxysporum fungal isolates (strains) using FTIR-ATR spectroscopy and advanced statistical methods. Analyst, 136, 988-995. doi:10.1039/c0an00801j
[33] Salman, A., Lapidot, I., Pomerantz, A., Tsror, L., Shufan, E., Moreh, R., Mordechai, S. and Huleihel, M. (2012) Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods. Journal of Biomedical Optics, 17, Article ID: 017002. doi:10.1117/1.JBO.17.1.017002
[34] Abdel Wahab, H. and Helal, N.A.S. (2013) Evaluation of Pre-harvest Bioagent applications for both production and Biological Control of Onion and Strawberry Plants under Natural Botrytis Infections. African Journal of Plant Science and Biotechnology, 7, 64-69.
[35] Abdel Wahab, H. and Younis, R. (2012) Early detection of Gray Mold in Grape using conventional and molecular methods. African Journal of Biotechnology, 11, 15251- 15257.
[36] Kritzman, G. and Netzer, D. (1978) A SELECTIVE medium for isolation and identification of Botrytis spp. from soil and onion seed. Phytoparasitica, 6, 3-7. doi:10.1007/BF02981180
[37] Kerssies, A. (1990) A selective medium for Botrytis cinerea to be used in a spore trap. Netherlands Journal of Plant Pathology, 96, 247-250. doi:10.1007/BF01974262
[38] ASD (1999) analytical spectral devices technical guide, fourth edition. Analytical Spectral Devices, Inc., Boulder.
[39] SAS Institute (1996) SAS/STAT user’s guide. Version 6.12, SAS Inst. Inc., Cary.
[40] Petisco, C., Downey, G., Murray, I., Zabalgogeazcoa, I., García-Criado, B. and García-Ciudad, A. (2008) Direct classification of related species of fungal endophytes (Epichloe spp.) using visible and near-infrared spectroscopyand multivariate analysis. Federation of European Microbiological Societies Microbiology Letters, 284, 135- 141. doi:10.1111/j.1574-6968.2008.01186.x
[41] Mariey, L., Signolle, J.P., Amiel, C. and Travert, J. (2001) Review: Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vibrational Spectroscopy, 26, 151-159. doi:10.1016/S0924-2031(01)00113-8
[42] Fischer, G., Braun, S., Thissen, R. and Dott, W. (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airbone filamentous fungi. Journal of Microbiological Methods, 64, 63-77. doi:10.1016/j.mimet.2005.04.005
[43] Noble, S.D. and Crowe, T.G. (2005) Analysis of crop and weed leaf diffuse re?ectance spectra. Transactions of the American Society of Agricultural and Biological Engineers, 48, 2379-2387.
[44] Noble, S.D. and Brown, R.B. (2009) Plant species discrimination using spectral/spatial descriptive statistics. Proceedings of the 1st International Workshop on Computer Image Analysis in Agriculture, Potsdam, 27-28 August, 82-92.
[45] Demirev, P.A., Ho, Y.P., Ryzhov, V. and Fenselau, C. (1999) Microorganism identification by mass spectrometry and protein database searches. Analytical Chemistry, 71, 2732-2738. doi:10.1021/ac990165u
[46] Hu, A., Tsai, P.J. and Ho, Y.P. (2005) Identification of microbial mixtures by capillary electrophoresis/selective tandem mass spectrometry. Analytical Chemistry, 77, 1488-1495. doi:10.1021/ac0484427
[47] Lundquist, M., Caspersen, M.B., Wikstr?m, P. and Forsman, M. (2005) Discrimination of Francisella tularensis subspecies using surface enhanced laser desorption ionization mass spectrometry and multivariate data analysis. FEMS Microbiology Letters, 243, 303-310. doi:10.1016/j.femsle.2004.12.020
[48] Van Wuijckhuijse, A.L., Stowers, M.A., Kleefsman, W.A., van Baar, B.L.M., Kientz, C.E. and Marijnissen, J.C.M. (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: Development of a fast detector for airborne biological pathogens. Journal of Aerosol Science, 36, 677-687. doi:10.1016/j.jaerosci.2004.11.003
[49] Wynne, C., Fenselau, C., Demirev, P.A. and Edwards, N. (2009) Top-down identification of protein biomarkers in bacteria with unsequenced genomes. Analytical Chemistry, 81, 9633-9642. doi:10.1021/ac9016677
[50] Ho, Y.P. and Reddy, P.M. (2010) Identification of Pathogens by Mass Spectrometry. Clinical Chemistry, 56, 525- 536. doi:10.1373/clinchem.2009.138867

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.