Karyological and Electrophoretic Distinction between Sexes of Trichosanthes bracteata


Chromosome studies and soluble protein profiles, fractionated by reducing and non-reducing SDS-PAGE, were carried out in dioecious Trichosanthes bracteata. Somatic chromosome no. 2n = 22 was recorded in both sexes. The karyotype of male and female plant shows high homogeneity and the absence of any heteromorphic pair of chromosomes negates the possibility of XY mechanism. Soluble protein profiles from the tuberous roots of the male and female plants, fractionated by reducing SDS-PAGE, did not show any qualitative distinction. Whereas the protein profile in non-reducing SDS-PAGE reveals a clear distinction when compared on a single gel. The difference is marked by the presence of a disulphide linked tertiary or folded protein at 19 k D region detected in male sex. However, at the level of primary structure the qualitative expression is similar indicating a common ancestry.

Share and Cite:

K. Karmakar, R. Sinha and S. Sinha, "Karyological and Electrophoretic Distinction between Sexes of Trichosanthes bracteata," American Journal of Plant Sciences, Vol. 4 No. 3, 2013, pp. 494-497. doi: 10.4236/ajps.2013.43062.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. S. Guttman and D. Charlesworth, “An X-Linked Gene with a Degenerate Y-Linked Homologue in a Dioecious Plant,” Nature, Vol. 396, No. 6682, 1998, pp. 263-266. doi:10.1038/30492
[2] D. Chattopadhyay and A. K. Sharma, “Sex Determination in Dioecious Species of Plants,” Feddes Repertorium, Vol. 102, No. 1-2, 1991, pp. 29-55.
[3] S. Grant, A. Houber, B. Vyskot, J. Siroky, W. H. Pan and J. Macas, “Genetics of Sex Determination in Flowering Plants,” Developmental Genetics, Vol. 15, No. 3, 1994, pp. 214-230. doi:10.1002/dvg.1020150304
[4] S. Sinha, B. Debnath and R. K. Sinha, “Differential Condensation of Chromosome Complements of Dioecious Momordica dioca Roxb. in Relation to DNA Content,” Indian Journal of Experimental Biology, Vol. 35, No. 11, 1997, pp. 1246-1248.
[5] M. Westergaard, “The Mechanism of Sex Determination in Dioecious Flowering Plants,” Advances in Genetics, vol. 9, 1958, pp. 217-281. doi:10.1016/S0065-2660(08)60163-7
[6] S. S. Mayer and D. Charlesworth, “Genetic Evidence for Multiple Origins of Dioecy in Hawaiian Shrub Wikstroemia (Thymelaeaceae),” Evolution, Vol. 46, No. 1, 1992, pp. 207-215.
[7] S. Bhandari, U. Dobhal, M. Sajwan and N. S, Bisht, “Trichosanthes tricuspidata: A Medicinally Important Plant,” Trees for Life Journal, Vol. 3, No. 5, 2008, p. 1.
[8] A. H. M. M. Rahman, M. Anisuzzaman, M. Ainsuzzaman, M. Z. Alam, A. K. M. R Islam and A. T. M. N. Zaman, “Taxonomic Studies of the Cucurbits Grown in the Northern Parts of Bangladesh,” Research journal of Agriculture and Biological Science, Vol. 2, No. 6, 2006, pp. 299-302.
[9] B. K. Duvey, R. Goyel, B. Parashar, D. Verma, H. Dhameja and D. Sharma, “Trichosanthes Tricuspidata: Exploration of It’s Medicinal Value,” Asian Journal of Pharmacy and Technology, Vol. 2, No. 1, 2011, pp. 26-28.
[10] G. Lakshminarayana, K. Sundar Rao, M. H. Klttur and C. S. Mahajanshetty, “Occurrence of Punicic Acid in Trichosanthes bracteata and Trichosanthes nervifolia Seed Oils,” Journal of the American Oil Chemist’s Society, Vol. 65, No. 3, 1988, pp. 347-348. doi:10.1007/BF02663074
[11] B. M. Verghese, “Cytology of Trichosanthes palmata Roxb.,” Cytologia, Vol. 36, No. 2, 1971, pp. 205-209. doi:10.1508/cytologia.36.205
[12] B. M. Verghese, “Cytology and Origin of a Tetraploid Trichosanthes palmata Roxb.,” Genetica, Vol. 43, No. 2, 1972, pp. 292-301. doi:10.1007/BF00123636
[13] A. K. Rangaswami, “Sex Chromosome of Trichosanthes palmata Roxb.,” Proceedings of 36th Indian Science Congress, Allahabad, Vol. 3, 1949, p. 137.
[14] A. K. Singh and R. P. Roy, “Cytological Studies in Trichosanthes palmata Roxb. A Natural Hexaploid,” Science & Culture, Vol. 39, No. 11, 1973, pp. 505-506.
[15] G. K. Thakur, “A Natural Tetraploid in the Genus Trichosanthes from Bihar,” Proceedings of 60th Indian Science Congress, Chandigarh, Vol. 3, 1973, p. 324.
[16] O. H. Lowry, A. L. Rosebrough Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” The Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[17] K. Weber and M. Osborn, “Proteins and Sodium Dodecyl Sulfate: Molecular Weight Determination on Polyacrylamide Gels and Related Procedures. In: H. Neurath and R. L. Hill, Eds., The Proteins, Academic Press, New York, 1975, pp. 179-223.
[18] U. K. Laemmli, “Clevage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature, Vol. 227, 1970, pp. 680-685. doi:10.1038/227680a0
[19] A. Levan, K. Fredga and A. A. Sandbery, “Nomenclature for Centromeric Position on Chromosomes,” Heriditas, Vol. 52, No. 2, 1964, pp. 201-220. doi:10.1111/j.1601-5223.1964.tb01953.x
[20] G. L. Stebbins, “Chromosomal Evolution in Higher Plants,” Addison—Wesley Publishing Co., Melno Park, 1971.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.