Oncomodulin and macrophages derived factors in pancreas injury and development paradigms

Abstract

Prior studies in the optic nerve injury paradigm showed con?icting data regarding production and signi?cance of the Ca2+-binding protein oncomodulin (OCM). Some have shown its potentaxon-regenerative or-growth attribute, where other showed little to no effect. We show here that pancreas inflammation lead to macrophages infiltration that produce OCM and inflamed tissues that express OCM receptorsin vivo. In culture OCM has a cytostatic effect on embryonic pancreas explants. Secretory products of zymosan activated macrophages are cytotoxic and factors derived from non-activated macrophages seem to promote pancreas development. It is our view that OCM is involved in protective injury response that allows through metabolism slowing sublethally injured cells to undergo recovery.

Share and Cite:

Siawaya, J., Capito, C. and Scharfmann, R. (2013) Oncomodulin and macrophages derived factors in pancreas injury and development paradigms. Modern Research in Inflammation, 2, 1-8. doi: 10.4236/mri.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Linda, S.C. (2008) BRS physiology. 4th Edition, Lippin- cott Publishing, Philadelphia, 255-256.
[2] Benowitz, L. and Yin, Y. (2008) Rewiring the injured CNS: Lessons from the optic nerve. Experimental Neu- rology, 209, 389-398. doi:10.1016/j.expneurol.2007.05.025
[3] Benowitz, L.I. and Yin, Y. (2010) Optic nerve regenera- tion. Archives of Ophthalmology, 128, 1059-1064. doi:10.1001/archophthalmol.2010.152
[4] Yin, Y., Cui, Q, Gilbert, H.Y., Yang, Y., Yang, Z., Ber- linicke, C., Li, Z., Zaverucha-do-Valle, C., He, H., Pet- kova, V., Zack, D.J. and Benowitz, L.I. (2009) Onco- modulin links inflammation to optic nerve regeneration. Proceedings of the National Academy of Sciences of the United States of America, 106, 19587-19592. doi:10.1073/pnas.0907085106
[5] Xu, X., D’Hoker, J., Stange, G., Bonne, S., De Leu, N., Xiao, X., Van de Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., Bouwens, L., Scharfmann, R., Gradwohl, G. and Heimberg, H. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pan- creas. Cell, 132, 197-207. doi:10.1016/j.cell.2007.12.015
[6] Hui, H. and Perfetti, R. (2002) Pancreas duodenum ho- meobox-1 regulates pancreas development during em- bryogenesis and islet cell function in adulthood. Euro- pean Journal of Endocrinology, 146, 129-141. doi:10.1530/eje.0.1460129
[7] Gradwohl, G., Dierich, A., LeMeur, M. and Guillemot, F. (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Pro- ceedings of the National Academy of Sciences of the United States of America, 97, 1607-1611. doi:10.1073/pnas.97.4.1607
[8] Miralles, F., Battelino, T., Czernichow, P. and Scharfmann, R. (1998) TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the ac- tivity of the matrix metalloproteinase MMP-2. Journal of Cell Biology, 143, 827-836. doi:10.1083/jcb.143.3.827
[9] Duvillie, B., Attali, M., Aiello, V., Quemeneur, E. and Scharfmann, R. (2003) Label-retaining cells in the rat pancreas: Location and differentiation potential in vitro. Diabetes, 52, 2035-2042. doi:10.2337/diabetes.52.8.2035
[10] Brennan, C. and Fabes, J. (2003) Alkaline phosphatase fusion proteins as affinity probes for protein localization studies. Science’s STKE, 2003, PL2. doi:10.1126/stke.2003.168.pl2
[11] Yin, Y.Q., Henzl, M.T., Lorber, B., Nakazawa, T., Thomas, T.T., Jiang, F., Langer, R. and Benowitz, L.I. (2006) On- comodulin is a macrophage-derived signal for axon re- generation in retinal ganglion cells. Nature Neuroscience, 9, 843-852. doi:10.1038/nn1701
[12] Livak, K.J. and Schmittgen, T.D. (2001) Analysis of rela- tive gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408. doi:10.1006/meth.2001.1262
[13] Li, Y., Irwin, N., Yin, Y., Lanser, M. and Benowitz, L.I. (2003) Axon regeneration in goldfish and rat retinal gan- glion cells: Differential responsiveness to carbohydrates and cAMP. Journal of Neuroscience, 23, 7830-7838.
[14] Zacharchuk, C.M., Drysdale, B.E., Mayer, M.M. and Shin, H.S. (1983) Macrophage-mediated cytotoxicity: Role of a soluble macrophage cytotoxic factor similar to lymphotoxin and tumor necrosis factor. Proceedings of the National Academy of Sciences of the United States of America, 80, 6341-6345. doi:10.1073/pnas.80.20.6341
[15] Takeda, Y., Higuchi, M., Sugimoto, M., Shimoda, O., Woo, H.J., Shimada, S. and Osawa, T. (1986) The pro- duction of a cytotoxic factor by mouse peritoneal macro- phages and macrophage hybridomas treated with various stimulating agents. Microbiology and Immunology, 30, 143-154.
[16] Drysdale, B.E., Zacharchuk, C.M. and Shin, H.S. (1983) Mechanism of macrophage-mediated cytotoxicity: Pro- duction of a soluble cytotoxic factor. Journal of Immu- nology, 131, 2362-2367.
[17] Warfel, A.H., Zucker-Franklin, D., Frangione, B. and Ghiso, J. (1987) Constitutive secretion of cystatin C (gamma-trace) by monocytes and macrophages and its downregulation after stimulation. Journal of Experimen- tal Medicine, 166, 1912-1917. doi:10.1084/jem.166.6.1912
[18] Assoian, R.K., Fleurdelys, B.E., Stevenson, H.C., Miller, P.J., Madtes, D.K., Raines, E.W., Ross, R. and Sporn, M.B. (1987) Expression and secretion of type β trans- forming growth factor by activated human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 84, 6020-6024.
[19] Van der Plas, M.J., van Dissel, J.T. and Nibbering, P.H. (2009) Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro- angiogenic type. PLoS One, 4, e8071. doi:10.1371/journal.pone.0008071
[20] Sugasawara, R.J., Cahoon, B.E. and Karu, A.E. (1985) The influence of murine macrophage-conditioned me- dium on cloning efficiency, antibody synthesis, and growth rate of hybridomas. Journal of Immunological Methods, 79, 263-275. doi:10.1016/0022-1759(85)90106-1
[21] Trump, B.F. and Berezesky, I.K. (1996) The mechanisms of calcium-mediated cell injury and cell death [correcgted]. New Horizons, 4, 139-150.
[22] Orrenius, S., Zhivotovsky, B. and Nicotera, P. (2003) Regulation of cell death: The calcium-apoptosis link. Nature Reviews Molecular Cell Biology, 4, 552-565. doi:10.1038/nrm1150
[23] Kurland, J.I., Traganos, F., Darzynkiewicz, Z. and Moore, M.A. (1978) Macrophage-mediated cytostasis of neoplas- tic hemopoietic cells: Cytofluorometric analysis of the reversible cell cycle block. Cellular Immunology, 36, 318-330. doi:10.1016/0008-8749(78)90276-9
[24] Stout, R. D. (1985) Cytostatic activity of in vitro generated macrophages: Evidence for a prostaglandin-inde- pendent reversible cytostatic mechanism. Cellular Immunology, 96, 83-103. doi:10.1016/0008-8749(85)90342-9
[25] Dekkers, J., Bayley, P., Dick, J.R., Schwaller, B., Berch- told, M.W. and Greensmith, L. (2004) Over-expression of parvalbumin in transgenic mice rescues motoneurons from injury-induced cell death. Neuroscience, 123, 459- 466. doi:10.1016/j.neuroscience.2003.07.013
[26] Palmer, E.J., MacManus, J.P. and Mutus, B. (1990) Inhi- bition of glutathione reductase by oncomodulin. Archives of Biochemistry and Biophysics, 277, 149-154. doi:10.1016/0003-9861(90)90563-E
[27] Lemaire, G., Alvarez-Pachon, F.J., Beuneu, C., Lepoivre, M. and Petit, J.F. (1999) Differential cytostatic effects of NO donors and NO producing cells. Free Radical Biology & Medicine, 26, 1274-1283. doi:10.1016/S0891-5849(98)00331-1
[28] Chalifour, L.E., Gomes, M.L. and Mes-Masson, A.M. (1989) Microinjection of metallothionein-oncomodulin DNA into fertilized mouse embryos is correlated with fetal lethality. Oncogene, 10, 1241-1246.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.