Wrinkled 1 (WRI1) Homologs, AP2-Type Transcription Factors Involving Master Regulation of Seed Storage Oil Synthesis in Castor Bean (Ricinus communisL.)


Among APETALA2 (AP2)-type plant specific transcription factor family, WRINKLED1 (WRI1), has appeared to be a master gene transcriptionally regulating a set of carbon metabolism- and fatty acid synthesis (FAS)-related genes responsible for seed specific triacylglycerols (TAGs) storage in oil plants. B3 type transcription factors, such as ABI3 and FUS3, are known to be involved in seed development, such as seed storage protein synthesis and maturation. Based on the recent whole genome sequence data of castor bean (Ricinus communis L.), putative WRI1 homologs (RcWRI1, RcWRI2) specifically expressed in castor bean seed have been identified by comparing organ specific expression profiles among seed development-related transcription factors, seed storage specific genes (Ricin, RcOleosin) and a set of FAS genes including genes for sucrose synthase (RcSUS2), biotin carboxyl carrier protein (a subunit of acetyl-CoA carboxylase, RcBCCP2) and ketoacyl-acyl carrier protein synthase (RcKAS1). Immunoreactive signals with WRI1, FUS3 and ABI5-related polypeptides were also detected in seed specifically, consistent with the expression profiles of seed development-related genes. The WRI1 binding consensus sites, [CnTnG](n)(7)[CG], designated as the AW-box, were found at the promoter region of RcBCCP2 and RcKAS1. Thus, RcWRI1 possibly play a pivotal role in seed specific TAGs storage during seed development by directly activating FAS -related genes.

Share and Cite:

D. Tajima, A. Kaneko, M. Sakamoto, Y. Ito, N. Hue, M. Miyazaki, Y. Ishibashi, T. Yuasa and M. Iwaya-Inoue, "Wrinkled 1 (WRI1) Homologs, AP2-Type Transcription Factors Involving Master Regulation of Seed Storage Oil Synthesis in Castor Bean (Ricinus communisL.)," American Journal of Plant Sciences, Vol. 4 No. 2, 2013, pp. 333-339. doi: 10.4236/ajps.2013.42044.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. A. McKeon, J. T. Lin and A. E. Stafford, “Biosynthesis of Ricinoleate in Castor Oil,” Advances in Experimental Medicine and Biology, Vol. 464, 1999, pp. 37-47. doi:10.1007/978-1-4615-4729-7_4
[2] A. Cagliari, M. Mar-gis-Pinheiro, G. Loss, A. A. Mastroberti, J. E. de Araujo Mariath and R. Margis, “Identification and Expression Analysis of Castor Bean (Ricinus communis) Genes Encoding Enzymes from the Triacylglycerol Biosynthesis Pathway,” Plant Science, Vol. 179, No. 5, 2010, pp. 499-509. doi:10.1016/j.plantsci.2010.07.015
[3] G. Q. Chen, C. Turner, X. He, T. Nguyen, T. A. McKeon and D. Laudencia-Chingcuanco, “Expression Profiles of Genes Involved in Fatty Acid and Triacylglycerol Synthesis in Castor Bean (Ricinus communis L.),” Lipids, Vol. 42, No. 3, 2007, pp. 263-274. doi:10.1007/s11745-007-3022-z
[4] N. A. Jolliffe, C. P. Craddock and L. Frigerio, “Pathways for Protein Transport to Seed Storage Vacuoles,” Biochemical Society Transactions, Vol. 33, No. 5, 2005, pp. 1016-1018.
[5] S. Kurup, H. D. Jones and M. J. Holdsworth, “Interactions of the Developmental Regulator ABI3 with Proteins Identified from Developing Arabidopsis Seeds,” Plant Journal, Vol. 21, No. 2, 2000, pp. 143-155. doi:10.1046/j.1365-313x.2000.00663.x
[6] E. M. S?derman, I. M. Brocard, T. J. Lynch and R. R. Finkelstein, “Regulation and Function of the Arabidopsis ABA-Insensitive4 Gene in Seed and Abscisic Acid Response Signaling Networks,” Plant Physiology, Vol. 124, No. 4, 2000, pp. 1752-1765. doi:10.1104/pp.124.4.1752
[7] M. Suzuki and D. R. McCarty, “Functional Symmetry of the B3 Network Controlling Seed Development,” Current Opinion in Plant Biology, Vol. 11, No. 5, 2008, pp. 548-553. doi:10.1016/j.pbi.2008.06.015
[8] S. Baud, S. Wuillème, A. To, C. Rochat and L. Lepiniec, “Role of WRINKLED1 in the Transcriptional Regulation of Glycolytic and Fatty Acid Biosynthetic Genes in Arabidopsis,” Plant Journal, Vol. 60, No. 6, 2009, pp. 933-947. doi:10.1111/j.1365-313X.2009.04011.x
[9] K. Maeo, T. To-kuda, A. Ayame, N. Mitsui, T. Kawai, H. Tsukagoshi, S. Ishi-guro and K. Nakamura, “An AP2-Type Transcription Factor, WRINKLED1, of Arabidopsis Thaliana Binds to the AW-Box Sequence Conserved among Proximal Upstream Regions of Genes Involved in Fatty Acid Synthesis,” Plant Journal, Vol. 60, No. 3, 2009, pp 476-487. doi:10.1111/j.1365-313X.2009.03967.x
[10] S. A. Braybrook and J. J. Harada, “LECs Go Crazy in Embryo Development,” Trends in Plant Science, Vol. 13, No. 12, 2008, pp. 624-630. doi:10.1016/j.tplants.2008.09.008
[11] M. Santos-Mendoza, B. Dubreucq, S. Baud, F. Parcy, M. Caboche and L. Lepiniec, “Deciphering Gene Regulatory Networks That Control Seed Development and Maturation in Arabidopsis,” Plant Journal, Vol. 54, No. 4, 2008, pp. 608-620. doi:10.1111/j.1365-313X.2008.03461.x
[12] A. Cernac and C. Benning, “WRINKLED1 Encodes an AP2/EREB Domain Protein Involved in the Control of Storage Compound Biosynthesis in Arabidopsis,” Plant Journal, Vol. 40, No. 4, 2004, pp. 575-585. doi:10.1111/j.1365-313X.2004.02235.x
[13] N. Focks and C. Benning, “Wrinkled1: A Novel, Low- Seed-Oil Mutant of Ara-bidopsis with a Deficiency in the Seed-Specific Regulation of Carbohydrate Metabolism,” Plant Physiology, Vol. 118, No. 1, 1998, pp. 91-101. doi:10.1104/pp.118.1.91
[14] A. To, J. Joubès, G. Barthole, A. Lécureuil, A. Scagnelli, S. Jasinski, L. Lepiniec and S. Baud, “WRINKLED Transcription Factors Orchestrate Tissue-Specific Regulation of Fatty Acid Biosynthesis in Arabi-dopsis,” Plant Cell, 2012, in Press. doi:10.1105/tpc.112.106120
[15] S. Baud, M. S. Mendoza, A. To, E. Harsco?t, L. Lepiniec and B. Dubreucq, “WRINKLED1 Specifies the Regulatory Action of LEAFY COTYLEDON2 towards Fatty Acid Metabolism during Seed Maturation in Arabidopsis,” Plant Journal, Vol. 50, No. 5, 2007, pp. 825-838. doi:10.1111/j.1365-313X.2007.03092.x
[16] Sanjaya, T. P. Durrett, S. E. Weise and C. Benning, “Increasing the Energy Density of Vegetative Tissues by Diverting Carbon from Starch to Oil Biosynthesis in Transgenic Arabidopsis,” Plant Biotechnology Journal, Vol. 9, No. 8, 2011, pp. 874-883. doi:10.1111/j.1467-7652.2011.00599.x
[17] J. Liu, W. Hua, G. Zhan, F. Wei, X. Wang, G. Liu and H. Wang, “Increasing Seed Mass and Oil Content in Transgenic Arabidopsis by the Overexpression of WRI1-Like Gene from Brassica napus,” Plant Physiology and Biochemistry, Vol. 48, No. 1, 2010, pp. 9-15. doi:10.1016/j.plaphy.2009.09.007
[18] B. Pouvreau, S. Baud, V. Vernoud, V. Morin, C. Py, G. Gendrot, J. P. Pichon, J. Rouster, W. Paul and P. M. Rogowsky, “Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis,” Plant Physiology, Vol. 156, No. 2, 2011, pp. 674- 686. doi:10.1104/pp.111.173641
[19] C. Soderlund, A. Descour, D. Kudrna, M. Bomhoff, L. Boyd, J. Currie, A. Angelova, K. Collura, M. Wissotski, E. Ashley, et al., “Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs,” PLoS Genetics, Vol. 5, 2009, e1000740. doi:10.1371/journal.pgen.1000740
[20] J. Schmutz, S. B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D. L. Hyten, Q. Song, J. J. Thelen, J. Cheng, D. Xu, U. Hellsten, G. D. May, Y. Yu, T. Sakurai, T. Umezawa, M. K. Bhattacharyya, D. Sandhu, et al., “Genome Sequence of the Palaeopolyploid Soybean,” Nature, Vol. 463, No. 7278, 2010, pp. 178-183. doi:10.1038/nature08670
[21] A. P. Chan, J. Crabtree, Q. Zhao, H. Lorenzi, J. Orvis, D. Puiu, A. Melake-Berhan, K. M. Jones, J. Redman, G. Chen, E. B. Cahoon, M. Gedil, M. Stanke, B. J. Haas, J. R. Wortman, C. M. Fraser-Liggett, J. Ravel and P. D. Rabinowicz, “Draft Genome Sequence of the Oilseed Species Ricinus communis,” Nature Biotechnology, Vol. 28, No. 9, 2010, pp. 951-956. doi:10.1371/journal.pone.0021743
[22] S. Sato, H. Hirakawa, S. Isobe, E. Fukai, A. Watanabe, M. Kato, K. Kawashima, C. Minami, A. Muraki, N. Nakazaki, et al., “Sequence Analysis of the Genome of an Oil-Bearing Tree, Jatropha curcas L.,” DNA Research, Vol. 18, No. 1, 2011, pp. 65-76. doi:10.1093/dnares/dsq030
[23] E. K. Al-Dous, B. George, M. E. Al-Mahmoud, M. Y. Al-Jaber, H. Wang, Y. M. Salameh, E. K. Al-Azwani, S. Chaluvadi, A. C. Pontaroli, J. DeBarry, V. Arondel, J. Ohlrogge, I. J. Saie, K. M. Suliman-Elmeer, J. L. Bennetzen, R. R. Kruegger and J. A. Malek, “De Novo Genome Sequencing and Comparative Genomics of Date Palm (Phoenix dactylifera),” Nature Biotechnology, Vol. 29, No. 6, 2011, pp. 521-527. doi:10.1038/nbt.1674
[24] M. Rivarola, J. T. Foster, A. P. Chan, A. L. Williams, D. W. Rice, X. Liu, A. Melake-Berhan, H. H. Creasy, D. Puiu, M. J. Rosovitz, H. M. Khouri, S. M. Beckstrom-Sternberg, G. J. Allan, P. Keim, J. Ravel and P. D. Rabinowicz, “Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis,” PLoS One, Vol. 6, No. 7, 2011, e21743. doi:10.1371/journal.pone.0021743
[25] J. Nakamura, T. Yuasa, H. T. Tran, K. Harano, S. Tanaka, T. Iwata, T. Phan and M. Iwaya-Inoue, “Rice Homologs of Inducer of CBF Expression (OsICE) Are Involved in Cold Acclimation,” Plant Biotechnology, Vol. 28, No. 3, 2011, pp. 303-309. doi:10.5511/plantbiotechnology.11.0421a
[26] M. Okuda, M. P. Nang, K. Oshima, Y. Ishibashi, S. H. Zheng, T. Yuasa and M. Iwaya-Inoue, “The Ethylene Signal Mediates Induction of GmATG8i in Soybean Plants under Starvation Stress,” Bioscience Biotechnology Biochemistry, Vol. 75, No. 7, 2011, pp. 1408-1412. doi:10.1271/bbb.110086
[27] T. Yuasa, Y. Ishibashi and M. Iwaya-Inoue, “A Flower Specific Calcineurin B-Like Molecule (CBL)-Interacting Protein Kinase (CIPK) Homolog in Yomato Cultivar Micro-Tom (Solanum lycopersicum L.),” American Journal of Plant Sciences, Vol. 3 No. 6, 2012, pp. 753-763. doi:10.4236/ajps.2012.36091
[28] B. Krizek, “AINTEGU-MENTA and AINTEGUMENTA- LIKE6 Act Redundantly to Regulate Arabidopsis Floral Growth and Patterning,” Plant Physiology, Vol. 150, No. 4, 2009, pp. 1916-1929. doi:10.1104/pp.109.141119

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.