The Role of Replacing CdO by Fe2O3 on the Fast Neutron Removal Cross Sections in Cd-Boro Phosphate Glass Shield

DOI: 10.4236/wjcmp.2013.31011   PDF   HTML   XML   3,481 Downloads   5,318 Views   Citations


This work deals with the application of [MERCSF-N] computer program in calculating the macroscopic effective removal cross-section of fast neutrons, ΣR (cm-1), for two different boro phosphate glass systems: (0.5 - x) CdO-x Fe2O3-0.4 P2O5-0.1 B2O3 and (0.5 - x) B2O3-x Fe2O3-0.1 CdO-0.4 P2O5 (with 0.05 x 0.5 by mole), to realize from the role of iron in the attenuation process and hence the usefulness of the glass containing iron as neutrons shielding material. The effect of replacing cadmium and boron oxides by iron oxide has been analyzed which proved that iron is more efficient than cadmium in attenuating and removing fast neutrons and that the presence of small amounts of B2O3 at least 0.1 mole fraction, with iron is needed to aid improving the removal cross-section of iron phosphate glasses. Experimental IR results are developed and used to trace the structural change and confirm the role of iron in the removal cross section.


Share and Cite:

H. Sallam and H. Saudy, "The Role of Replacing CdO by Fe2O3 on the Fast Neutron Removal Cross Sections in Cd-Boro Phosphate Glass Shield," World Journal of Condensed Matter Physics, Vol. 3 No. 1, 2013, pp. 62-66. doi: 10.4236/wjcmp.2013.31011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. H. Im, Y. H. Na, N. J. Kim, D. H. Kim, C. W. Hwang and B. K. Ryu, “Structure and Properties of Zinc Bismuth Phosphate Glass,” Thin Solid Films, Vol. 518, No. 24, 2010, pp. e46-e49. doi:10.1016/j.tsf.2010.03.128
[2] J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” Journal of Non-Crystalline Solids, Vol. 38-39, 1984, pp. 879-884. doi:10.1016/0022-3093(80)90548-7
[3] X. Fang, C. S. Ray, A. Mogus-Milankovic and D. E. Day, “Iron Redox Equilibrium, Structure, and Properties of Iron Phosphate Glasses,” Journal of Non-Crystalline Solids, Vol. 283, No. 3, 2001, pp. 162-172. doi:10.1016/S0022-3093(01)00416-1
[4] P. A. Bingham, R. J. Hand, S. D. Forder and A. Lavaysierre, “Vitrified Metal Finishing Wastes: II. Thermal and Structural Characterisation,” Journal of Hazardous Materials, Vol. 122, No. 1-2, 2005, pp. 129-138. doi:10.1016/j.jhazmat.2005.03.031
[5] M. H. Kharita, S. Yousef and M. Al Nassar, “Review on the Addition of Boron Compounds to Radiation Shielding Concrete,” Progress in Nuclear Energy, Vol. 53, No. 2, 2011, pp. 207-211. doi:10.1016/j.pnucene.2010.09.012
[6] H. A. Saudi, A. G. Mostafa, N. Sheta, S. U. El Kameesy and H. A. Sallam, “The Structural Properties of CdOBi2O3 Borophosphate Glass System Containing Fe2O3 and Its Role in Attenuating Neutrons and Gamma Rays,” Physica B: Condensed Matter, Vol. 406, No. 21, 2011, pp. 4001-4006.
[7] E. P. Blizard and L. S. Abbott, “Introduction to Nuclear Engineering 3rd Ed.,” John Wiley & Sons, Inc., Hoboken, 1962.
[8] J. Wood, “Computational Methods in Reactor Shielding,” Pergamon Press, Inc., New York, 1982.
[9] M. F. Kaplan, “Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction,” John Wiley & Sons, New York, 1989.
[10] Y. Iwamoto and R. M. Ronningen, “Attenuation of Ambient Dose Equivalent from Neutrons by Thick Concrete, Cast Iron and Composite Shields for High Energy Proton, 3He, 48Ca and 238U Ions on Cu Targets for Shielding Design,” Nuclear Instruments and Methods in Physics Research Section B, Vol. 269, No. 3, 2011, pp. 353-363. doi:10.1016/j.nimb.2010.11.046
[11] H. S. Liu, P. Y. Shih and T. S. Chin, “High Photoluminescent Property of Low-Melting Sn-Doped Phosphate Glass,” Applied Physics Express, Vol. 3, No. 8, 2010, p. 227.
[12] V. V. Kushnikov, Y. I. Matyunin, T. V. Smelova and A. V. Demin, “Investigations of Plutonium Immobilization into the Vitreous,” Materials Research Society Symposium Proceedings, Vol. 465, 1997, p. 55.
[13] B. C. Sales and L. A. Boatner, “New Rare-Earth-Activated Phosphate Glass Scintillators,” Materials Letters, Vol. 2, No. 4, 1984, pp. 301-304. doi:10.1016/0167-577X(84)90038-7
[14] S. T. Reis, A. Mogusˇ-Milankovic, V. Licˇina, J. B. Yang, M. Karabulut, D. E. Day and R. K. Brow, “Iron Redox Equilibrium, Structure and Properties of Zinc Iron Phosphate Glasses,” Journal of Non-Crystalline Solids, Vol. 353, No. 2, 2007, pp. 151-158. doi:10.1016/j.jnoncrysol.2006.10.002
[15] A. Mogous-Milankovic and D. E. Day, “Infrared Spectra of Fe2O3-PbO-P2O5 Glasses,” Journal of Non-Crystalline Solids, Vol. 162, 1993, p. 275.
[16] I. W. Donald, B. L. Metcalfe and R. N. J. Taylor, “The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses,” Journal of Materials Science, Vol. 32, No. 22, 1997, pp. 5851-5887. doi:10.1023/A:1018646507438
[17] B. C. Sales and L. A. Boatner, In: W. Lutze and R. C. Ewing, Eds., Radioactive Waste Forms for the Future, North-Holland, Amsterdam, 1988, p. 193.
[18] A. P. Mukhamet-Galeyev, L. O. Magazina, K. A. Levin, N. D. Samotoin, A. V. Zotov and B. I. Omelianenko, “The Interaction of Na-Al-P-Glass (Cs, Sr-Bearing) with Water at Elevated Temperatures,” Materials Research Society Symposium Proceedings, Vol. 353, 1995, p. 79. doi:10.1557/PROC-353-79
[19] Y. M. Moustafa, K. El-Egili, H. Doweidar and I. Abbas, “Structure and Electrical Conduction of Fe2O3-P2O5 Glasses,” Physica B: Condensed Matter, Vol. 353, No. 1-2, 2004, pp. 82-91. doi:10.1016/j.physb.2004.09.004
[20] Y. M. Moustafa and A. El-Adawy, “Structural and Physical Properties of Iron Oxychloride Phosphate Glasses,” Physica Status Solidi A, Vol. 179, No. 1, 2000, pp. 83-93.
[21] A. M. El-Khayatt and A. E.-S. Abdo, “MERCSF-N Calculation: A Program for Fast Neutron Removal Cross Sections in Composite Shields,” Annals of Nuclear Energy, Vol. 36, No. 6, 2009, pp. 832-836. doi:10.1016/j.anucene.2009.01.013

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.