The Propagation of Circularly Polarized Waves in Quantum Plasma


The quantum effects on the propagation circularly polarized waves have been investigated in electron magnetized quantum plasmas. We obtain the dispersion equations of the propagation of circularly polarized laser beam through cold plasma. The results show that the laser can be propagated due to the quantum effects which enhance the propagation phase velocity. For this purpose, the quantum hydrodynamic (QHD) equations with magnetic field and Maxwell’s equations system is used to derive these dispersion relations. The perturbed electron density and current due to the interaction of laser beam with quantum plasma have been investigated. It is shown that the external magnetic field which is parallel to the propagation waves has strong effect on the dispersion relation for the laser propagation in quantum model than the classical regime.

Share and Cite:

B. Mohamed and R. Albrulosy, "The Propagation of Circularly Polarized Waves in Quantum Plasma," Journal of Modern Physics, Vol. 4 No. 2, 2013, pp. 236-239. doi: 10.4236/jmp.2013.42033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, “Semiconductor Equations,” Springer-Verlag, New York, 1990. doi:10.1007/978-3-7091-6961-2
[2] G. V. Shpatakovskaya, “Semiclassical Model of a One-Dimensional Quantum Dot,” Journal of Experimental and Theoretical Physics, Vol. 102, No. 3, 2006, pp. 466-474. doi:10.1134/S1063776106030095
[3] M. Marklund, G. Brodin and L. Stenflo, “Electromagnetic Wave Collapse in a Radiation Background,” Physical Review Letters, Vol. 91, No. 16, 2003, 4 p. doi:10.1103/PhysRevLett.91.163601
[4] L. K. Ang and P. Zhang, “Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes,” Physical Review Letters, Vol. 98, No. 16, 2007, 4 p. doi:10.1103/PhysRevLett.98.164802
[5] M. M. Tskhakaya and P. K. Shukla, “Quantum Electrody-namical Shocks and Solitons in Astrophysical Plasmas,” Europhysics Letters, Vol. 72, No. 6, 2005, pp. 950-954. doi:10.1209/epl/i2005-10330-9
[6] C. Gardner, “The Quantum Hydrodynamic Model for Semiconductor Devices,” SIAM Journal on Applied Mathematics, Vol. 54, No. 2, 1994, pp. 409-427.
[7] G. Manfredi, “How to Model Quantum Plasmas,” Fields Institute Communications Series, Vol. 46, 2005, pp. 263-287.
[8] G. Manfredi and F. Haas, “Self-Consistent Fluid Model for a Quantum Electron Gas,” Physical Review B, Vol. 64, No. 7, 2001, 7 p. doi:10.1103/PhysRevB.64.075316
[9] H. Ren, A. Wu and P. Chu, “Dispersion of Linear Waves in Quantum Plasmas,” Physics of Plasma, Vol. 14, No. 6, 2007, 6 p. doi:10.1063/1.2738848
[10] P. Kumar and C. Tiwari, “High Frequency Oscillations in Quantum Plasma,” Journal of Physics: Conference Series, Vol. 208, No. 1, 2010, Article ID: 012051. doi:10.1088/1742-6596/208/1/012051
[11] A. F. Alexandrov, L. S. Bogdankevich and A. A. Rukhodze, “Principles of Plasma Electrodynamics,” Springer, Berlin, 1984. doi:10.1007/978-3-642-69247-5
[12] M. Lazar, P. K. Shukla and A. Smolyakov, “Surface Waves on a Quantum Plasma Half-Space,” Physics of Plasma, Vol. 14, No. 12, 2007, Article ID: 124501. doi:10.1063/1.2825278
[13] H. Ren, Z. Wu, J. Cao and P. K. Chu “Dispersion of Multi-Stream Instability in Quantum Magnetized Hot Plasmas,” Physics Letters A, Vol. 372, No. 15, 2008, 2676-2683. doi:10.1016/j.physleta.2007.12.028
[14] J. Lundin, J. Zamanian, M. Marklund and G. Brodin, “Short Wavelength Electromagnetic Propagation in Magnetized Quantum,” Physics of Plasma, Vol. 14, No. 6, 2007, Article ID: 062112. doi:10.1063/1.2743028

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.