Steam Gasification of Different Brown Coals Catalysed by the Naturally Occurring Calcium Species


The effects of the constituents of mineral matter in brown coals from different deposits of Kansk-Achinsk, Lenaand from Yallourn Basins on the structural parameters and steam gasification reactivities of respective coal chars at moderate temperature and at low and high pressure were studied in this paper. The data on how the preliminary decationization with diluted hydrochloric, acetic and sulphuric acids affect char gasification reactivities are presented. The importance of surface area and crystallinity of chars and the presence of naturally occurring metals on gasification reactivity is considered. Quantitative correlations between the calcium contents and the extents of gasification are revealed. The gasification results obtained in a flow reactor with steam stream and in an autoclave reactor at high pressure of gaseous products are compared. The catalytic effect of dispersed calcium oxide-carbonate particles produced from the naturally occurring calcium containing carboxylates was shown to be a key factor for char gasification reactivity, the effect in the flow reactor being much larger as compared to that in the autoclave reactor. This was mainly related to different forms of catalytically active calcium species and to the composition of the gaseous reaction mixture.

Share and Cite:

P. Kuznetsov, S. Kolesnikova and L. Kuznetsova, "Steam Gasification of Different Brown Coals Catalysed by the Naturally Occurring Calcium Species," International Journal of Clean Coal and Energy, Vol. 2 No. 1, 2013, pp. 1-11. doi: 10.4236/ijcce.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. A. Adams and P. I. Barton, “Combining coal Gasification and Natural Gas Reforming for Efficient Polygeneration,” Fuel Processing Technology, Vol. 92, No. 3, 2011, pp. 639-655. doi:10.1016/j.fuproc.2010.11.023
[2] A. Sharma, T. Takanohashi, K. Morishita, T. Takarada and I. Saito, “Low Temperature Catalytic Steam Gasification of Hyper Coal to Produce H2 and Synthesis Gas,” Fuel, Vol. 87, No. 4-5, 2008, pp. 491-497. doi:10.1016/j.fuel.2007.04.015
[3] K. Miura, K. Hashimoto and P. L. Silveston, “Factors Affecting the Reactivity of Coal Chars during Gasification, and Indices Representing Reactivity,” Fuel, Vol. 68, No. 11, 1989, pp. 1461-1467. doi:10.1016/0016-2361(89)90046-X
[4] L. Lemaignen, Y. Zhuo, G. P. Reed, D. R. Dugwell and R. Kandiyoty, “Factors Governing Reactivity in Low Temperature Coal Gasification. Part II. An Attempt to Correlate Conversions with Inorganic and Mineral Constituents,” Fuel, Vol. 81, No. 3, 2002, pp. 315-326. doi:10.1016/S0016-2361(01)00140-5
[5] I. M. K. Ismail and P. L. Walker, “D.s.c. and TGA Measurements of O2 Interaction with Coal Chars,” Fuel, Vol. 68, No. 11, 1989, pp. 1456-1460. doi:10.1016/0016-2361(89)90045-8
[6] T. Takarada, Y. Tamai and A. Tomita, “Reactivities of 34 Coals under Steam Gasification,” Fuel, Vol. 64, No. 10, 1985, pp. 1438-1442. doi:10.1016/0016-2361(85)90347-3
[7] Z.-I. Liu and H.-H. Zhu, “Steam Gasification of Coal Char Using Alkali and Alkaline-Earth Metal Catalysts,” Fuel, Vol. 65, No. 10, 1986, pp. 1334-1338. doi:10.1016/0016-2361(86)90099-2
[8] Y. Ohtsuka and A. Tomita, “Calcium Catalysed Steam Gasification of Yallourn Brown Coal,” Fuel, Vol. 65, No. 12, 1986, pp. 1653-1657. doi:10.1016/0016-2361(86)90264-4
[9] F. Kapteijn, H. Porre and J. A. Moulijn, “CO2 Gasification of Activated Carbon Catalyzed by Earth Alkaline Elements,” AIChE Journal, Vol. 32, No. 4, 1986, pp. 691-695. doi:10.1002/aic.690320421
[10] Y. Ohtsuka, Y. Tamai and A. Tomita, “Iron-Catalyzed Gasification of Brown Coal at Low Temperatures,” Fuel and Energy, Vol. 1, No. 1, 1987, pp. 32-36. doi:10.1021/ef00001a006
[11] A. Linares-Solano, E. J. Hippo and P. L. Walker, “Catalytic Activity of Calcium for Lignite Char Gasification in Various Atmospheres,” Fuel, Vol. 65, No. 6, 1986, pp. 776-779. doi:10.1016/0016-2361(86)90068-2
[12] C.-Z. Li, “Some Recent Advances in the Understanding of the Pyrolysis and Gasification Behaviour of Victorian Brown Coal,” Fuel, Vol. 86, No. 12-13, 2007, pp. 1664-1683. doi:10.1016/j.fuel.2007.01.008
[13] T. Kyotani, S. Karasawa and A. Tomita, “TPD Study of Coal Chars in Relation to the Catalysis of Mineral Matter,” Fuel, Vol. 65, No. 10, 1986, pp. 1466-1469. doi:10.1016/0016-2361(86)90125-0
[14] P. Samaras, E. Diamadopoulos and G. P. Sakellaropoulos, “The Effect of Mineral Matter and Pyrolysis Conditions on the Gasification of Greek Lignite by Carbon Dioxide,” Fuel, Vol. 75, No. 9, 1996, pp. 1108-1114. doi:10.1016/0016-2361(96)00058-0
[15] P. J. J. Tromp, F. Kapteijn and J. A. Moulijn, “NATO ASI Series. Series C. Mathematical and Physical Sciences,” No. 370, Kluwer, Amsterdam, 1992, p. 84.
[16] K. Matsuoka, T. Yamashita, K. Kuramoto and A. Tomita, “Transformation of Alkali and Alkaline Earth Metals in Low Rank Coal during Gasification,” Fuel, Vol. 87, No. 6, 2008, pp. 885-893. doi:10.1016/j.fuel.2007.05.031
[17] K. Mitsuoka, S. Hayashi, H. Amano, K. Kayahara, E. Sasaoka and A. Uddin, “Gasification of Woody Biomass Char with CO2: The Catalytic Effects of K and Ca Species on Char Gasification Reactivity,” Fuel Processing Technology, Vol. 92, No. 1, 2011, pp. 26-31 doi:10.1016/j.fuproc.2010.08.015
[18] A. Linares-Solano, C. Salinas-Martínez de Lecea, F. Rodríguez-Reinoso and M. Almela-Alarcón “Anomalous’ Increase in CO2 Reactivity, Relative to Steam and Air on Acid Treatment of Coals,” Fuel, Vol. 65, No. 10, 1986, pp. 1345-1348. doi:10.1016/0016-2361(86)90101-8
[19] S. Zhang, J. I. Hayashi and C.-Z. Li, “Volatilisation and Catalytic Effects of Alkali and Alkaline Earth Metallic Species during the Pyrolysis and Gasification of Victorian Brown Coal. Part IX. Effects of Volatile-Char Interactions on Char-H2O and Char-O2 Reactivities,” Fuel, Vol. 90, No. 11, 2011, pp. 1655-1661.
[20] C. Sheng, “Char Structure Characterised by Raman Spectroscopy and Its Correlations with Combustion Reactivity,” Fuel, Vol. 86, No. 15, 2007, pp. 2316-2324. doi:10.1016/j.fuel.2007.01.029
[21] D. Yanovsky, V. Sharypov, M. Schipko and P. Kuznetsov, “Pyrolysis and Steam Gasification of Solid Residues from Borodino Coal Hydrogenation,” Khimiya Tverdogo Topliva, No. 5, 1989, pp. 77-81 (Rus).
[22] K. V. Gavrilin and A. Yu. Ozerskii, “Kansko-Achinskii ugol’nyi Bassein (Kansk-Achinsk Coal Basin),” Nedra, Moscow, 1996 (Rus).
[23] P. Kuznetsov, “The Chemical Modification, Swelling of Coals, and Reactivity in Hydrogenation,” Khimiya Tverdogo Topliva No. 3, 1998, pp. 53-68 (Rus).
[24] P. Kuznetsov and L. Kuznetsova, “Effect of the Mineral Components of Brown Coals on the Properties of Organic Matter in the Interaction with Solvents,” Solid Fuel Chemistry, Vol. 42, No. 6, 2008, pp. 372-380.
[25] P. Kuznetsov, L. Kuznetsova, J. Bimer, et al., “Quantitative Relation between the Macromolecular Characteristics of Brown Coal and Its Reactivity in Conversion with Tetralin,” Fuel, Vol. 76, No. 2, 1997, pp. 189-193. doi:10.1016/S0016-2361(96)00172-X
[26] P. Kuznetsov, L. Kuznetsova and E. Kutikhina, “Effect of the Decationization of Brown Coal from the Kansk-Achinsk Basin on the Physicochemical Properties of the Resulting Sorbents,” Solid Fuel Chemistry, Vol. 42, No. 3, 2008, pp. 153-159.
[27] D. J. Allardice, L. M. Clemow and W. R. Jackson, “Determination of the Acid Distribution and Total Acidity of Low-Rank Coals and Coal-Derived Materials by an Improved Barium Exchange Technique,” Fuel, Vol. 82, No. 1, 2003, pp. 35-40. doi:10.1016/S0016-2361(02)00193-X
[28] M. N. Siddiqiu, M. F. Ali and J. Shirikoff, “Use of X-Ray Diffraction in Using the Aging Pattern of Asphalt Fractions,” Fuel, Vol. 81, No. 1, 2002, pp. 51-58. doi:10.1016/S0016-2361(01)00116-8
[29] V. Saranchuk, A. Airuni and K. Kovalev, “Nadmolekulyarnaya Organizatsiya, Struktura i Svoistva Uglya (Supramolecular Organization, Structure, and Properties of Coal),” Naukova Dumka, Kiev, 1988 (Rus).
[30] A. F. Lukovnikov, Yu. M. Korolev, G. S. Golovin, et al., “X-Ray Diffraction of Kuznetsk Coals,” Khimiya Tverdogo Topliva, No. 5, 1996, pp. 3-13 (Rus).
[31] H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada and Y. Saito, “XRD Analysis If Carbon Stacking Structure in Coal During Heat Treatment,” Fuel, Vol. 83, No. 17-18, 2004, pp. 2427-2433. doi:10.1016/j.fuel.2004.06.019
[32] M. Siddiuqui, M. Ali and J. Shorokoff, “Use of X-Ray Diffraction in Assessing the Aging of Asphalt Fractions,” Fuel, Vol. 81, No. 1, 2002, pp. 51-58. doi:10.1016/S0016-2361(01)00116-8
[33] E. N. Loskutova, N. M. German, K. I. Bochkareva and K. N. Schiryaeva, “Pyrolysis of Brown Coals,” Nauka, Novosibirsk, 1968.
[34] R. Ya. Birgaus and T. A. Kuharenko, “Chemistry and Processing of Fuels,” Vol. 27, International Gemological Institute, Moskwa, 1971, pp. 3-12.
[35] J. F. Byrne and H. Marsh, “Introductory Overview,” In: J. W. Patrick, Ed., Porosity in Carbons: Characterization and Applications, Edward Arnold, London, 1995, pp. 7-12.
[36] H. Marsh, “The Determination of Surface Areas of Coals—Some Physicochemical Considerations,” Fuel, Vol. 44, No. 2, 1965, pp. 253-260.
[37] N. R. Laine, F. J. Vastola and P. L. Walker, “The Importants of Active Surface Area in the Carbon Oxygen Reaction,” The Journal of Physical Chemistry, Vol. 67, No. 10, 1963, pp. 2030-2034. doi:10.1021/j100804a016
[38] J. B. Lewis, “Modern Aspects of Graphite Technology,” Academic Press, New York, 1970, p. 129.
[39] D. G. Roberts and D. J. Harris, “Char Gasification in Mixtures of CO2 and H2O: Competition and Inhibition,” Fuel, Vol. 86, No. 17-18, 2007, pp. 2672-2678. doi:10.1016/j.fuel.2007.03.019

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.