Study on Interface Friction Model for Engineering Materials Testing on Split Hopkinson Pressure Bar Tests

DOI: 10.4236/mme.2013.31003   PDF   HTML   XML   4,280 Downloads   7,931 Views   Citations


Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.


Share and Cite:

Y. Lu and S. Zhang, "Study on Interface Friction Model for Engineering Materials Testing on Split Hopkinson Pressure Bar Tests," Modern Mechanical Engineering, Vol. 3 No. 1, 2013, pp. 27-33. doi: 10.4236/mme.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] ASME, “#242 Split-Hopkinson Pressure Bar Apparatus,” 2010.
[2] P. Hartley, C. E. N. Sturgess and G. W. Rowe, “Influence of Friction on the Prediction of Forces, Pressure Distributions and Properties in Upset Forging,” International Journal of Mechanical Sciences, Vol. 22, No. 12, 1980, pp. 743-753. doi:10.1016/0020-7403(80)90059-4
[3] J. R. Klepaczko and Z. Malinowski, “Dynamic Frictional Effects as Measured from the Split Hopkinson Pressure Bar,” In: K. Kawata and J. Shioiri, Eds., High Velocity Deformation of Solids, Springer-Verlag, Berlin, 1978, pp. 403-416.
[4] D. A. Gorham, P. H. Pope and O. Cox, “Sources of Error in Very High Strain Rate Compression Tests,” In: J. Harding, Ed., Mechanical Properties at High Rates of Strain, Institution of Physics Conference Series, Oxford, 1984, No. 70, pp. 151-158.
[5] J. Mescall, R. Papirno and J. Mclaughlin, “Stress and Deformation States Associated with Upset Tests in Metals,” In: R. Chait and R. Papirno, Eds., Compression Testing of Homogeneous Materials and Composite, American Society for Testing and Materials, Philadelphia, 1983, pp. 723. doi:10.1520/STP36193S
[6] J. A. Schey, T. R. Venner and S. L. Takomana, “The Effect of Friction on Pressure in Upsetting at Low Diameter-to-Height Ratios,” Journal of Mechanical Working Technology, Vol. 6, No. 1, 1982, pp. 23-33. doi:10.1016/0378-3804(82)90017-1
[7] J. K. Bannerjee, “Barreling of Solid Cylinders under Axial Compression,” Journal of Engineering Materials and Technology, Vol. 107, No. 2, 1985, pp. 138-144. doi:10.1115/1.3225789
[8] J. K. Bannerjee and G. Cárdenas, “Numerical Analysis on the Barreling of Solid Cylinders under Axisymmetric Compression,” Journal of Engineering Materials and Technology, Vol. 107, No. 2, 1985, pp. 145-147. doi:10.1115/1.3225790
[9] R. Narayanasamy and K. S. Pandey, “Phenomenon of Barrelling in Aluminium Solid Cylinders during Cold Upset-Forming,” Journal of Materials Processing Technology, Vol. 70, No. 1-3, 1997, pp. 17-21. doi:10.1016/S0924-0136(97)00035-6
[10] E. Parteder and R. Bünten, “Determination of Flow Curves by Means of a Compression Test under Sticking Friction Conditions Using an Iterative Finite Element Procedure,” Journal of Materials Processing Technology, Vol. 74, No. 1-3, 1998, pp. 227-233. doi:10.1016/S0924-0136(97)00275-6
[11] W. Ohnson, G. L. Baraya and R. A. C. Slater, “On Heat Lines or Lines of Thermal Discontinuity,” International Journal of Mechanical Sciences, Vol. 6, No. 6, 1964, pp. 409-414. doi:10.1016/S0020-7403(64)80001-1
[12] Y. L. Bai and B. Dodd, “Adiabatic Shear Localization: Occurrence, Theories and Applications,” 1st Edition, Pergamon, Oxford, 1992.
[13] A. Jenner, Y. L. Bai and B. Dodd, “A Thermo-Plastic Shear Instability Criterion Applied to Surface Cracking in Upsetting and Related Processes,” The Journal of Strain Analysis for Engineering Design, Vol. 16, No. 3, 1981, pp. 159-164. doi:10.1243/03093247V163159
[14] L. D. Bertholf and C. H. Karnes, “Two Dimensional Analysis of the Split Hopkinson Pressure Bar System,” Journal of the Mechanics and Physics of Solids, Vol. 23, No. 1, 1975, pp. 1-19. doi:10.1016/0022-5096(75)90008-3
[15] J. Z. Malinowski and J. R. Klepaczko, “A Unified Analytic and Numerical Approach to Specimen Behaviour in the Split-Hopkinson Pressure Bar,” International Journal of Mechanical Sciences, Vol. 28, No. 6, 1986, pp. 381391. doi:10.1016/0020-7403(86)90057-3
[16] D. A. Gorham, “The Effect of Specimen Dimensions on High Strain Rate Compression Measurements of Copper,” Journal of Physics D: Applied Physics, Vol. 24, No. 8, 1991, pp. 1489-1492. doi:10.1088/0022-3727/24/8/041
[17] Q. M. Li and H. Meng, “About the Dynamic Strength Enhancement of Concrete-Like Materials in a Split Hopkinson Pressure Bar Test,” International Journal of Solids and Structures, Vol. 40, No. 2, 2003, pp. 343-360. doi:10.1016/S0020-7683(02)00526-7
[18] Q. M. Li, Y. B. Lu and H. Meng, “Further Investigation on the Dynamic Compressive Strength Enhancement of Concrete-Like Materials Based on Split Hopkinson Pressure Bar Tests, Part II: Numerical Simulations,” International Journal of Impact Engineering, Vol. 36, No. 12, 2009, pp. 1335-1345. doi:10.1016/j.ijimpeng.2009.04.010
[19] H. Meng and Q. M. Li, “Correction between the Accuracy of a SHPB Test and the Stress Uniformity Based on Numerical Experiments,” International Journal of Impact Engineering, Vol. 28, No. 5, 2003, pp. 537-555. doi:10.1016/S0734-743X(02)00073-8
[20] B. Avitzur, “Forging of Hollow Discs,” Israel Journal of Technology, Vol. 2, No. 3, 1964, pp. 295-304.
[21] B. Avitzur, “Metal Forming: Processes and Analysis,” McGraw-Hill, New York, 1968.
[22] B. Avitzur and F. Sauerwine, “Limit Analysis of Hollow Disk Forging. Part 1: Upper Bound,” Journal of Engineering for Industry, Vol. 100, No. 3, 1978, pp. 340-344. doi:10.1115/1.3439437
[23] B. Avitzur and C. J. Van Tyne, “Ring Forming: An Upper Bound Approach. Part 2: Process Analysis and Characteristics,” Journal of Engineering for Industry, Vol. 104, No. 3, 1982, pp. 238-247. doi:10.1115/1.3185825
[24] B. Avitzur and C. J. Van Tyne, “Ring Forming: An Upper Bound Approach. Part 3: Constrained Forging and Deep Drawing Applications,” Journal of Engineering for Industry, Vol. 104, No. 3, 1982, pp. 248-252. doi:10.1115/1.3185826
[25] B. Avitzur and R. A. Kohser, “Disk and Strip Forging for the Determination of Friction and Flow Strength Values,” Tribology Transactions, Vol. 21, No. 2, 1978, pp. 143151. doi:10.1080/05698197808982870
[26] B. Avitzur and C. J. Van Tyne, “Ring Forming: An Upper Bound Approach. Part 1: Flow Pattern and Calculation of Power,” Journal of Engineering for Industry, Vol. 104, No. 3, 1982, pp. 231-237. doi:10.1115/1.3185824
[27] S. M. Walley, J. E. Field, P. H. Pope and N. A. Safford, “A Study of the Rapid Deformation Behaviour of a Range of Polymers,” Philosophical Transactions of Royal Society A, Vol. 328, No. 1597, 1989, pp. 1-33. doi:10.1098/rsta.1989.0020
[28] S. M. Walley, J. E. Field, P. H. Pope and N. A. Safford, “The Rapid Deformation Behaviour of Various Polymers,” Journal de Physique III France, Vol. 1, No. 12, 1991, pp. 1889-1925. doi:10.1051/jp3:1991240
[29] S. M. Walley, P. D. Church, M. Furth and J. E. Field, “A High-Speed Photographic Study of the Rapid Deformation of Metal Annuli: A Comparison of Theory with Experiment,” Journal de Physique IV France, Vol. 7, No. C3, 1997, pp. 317-322. doi:10.1051/jp4:1997356
[30] E. Siebel, “Fundamentals for the Calculation of Power and Working Requirements in Forging and Rolling-Mill Practice (Grundlagen zur Berechnung des Kraftund Arbeitsbedarf beim Schmieden und Walzen),” Stahl und Eisen, Vol. 43, 1923, pp. 1295-1298. (in German)
[31] B. J. Briscoe and R. W. Nosker, “The Influence of Interfacial Friction on the Deformation of High Density Polyethylene in a Split Hopkinson Pressure Bar,” Wear, Vol. 95, No. 3, 1984, pp. 241-262. doi:10.1016/0043-1648(84)90140-6
[32] X. Y. Wang, F. Y. Lu and Y. L. Lin, “Study on Interfacial Friction Effect in the SHPB Tests,” Explosion and Shock Waves, Vol. 26, No. 2, 2006, pp. 134-139. (in Chinese)
[33] F. Y. Lin, D. S. Zhang and X. D. Ma, “Study on the Friction Characteristics of Polyurethane for the Friction Linear of Hoisting,” Lubrication Engineering, Vol. 2, No. 33-34, 2000, p. 60. (in Chinese)
[34] H. Meng, “Numerical Split Hopkinson Pressure Bar (NSHPB) Test and Its Applications in the Assessment and Improvement of SHPB Test Results,” Ph.D. Thesis, Nanyang Technological University, Singapore, 2002.
[35] D. Pavelescu and A. Tudor, “The Sliding Friction Coefficient—Its Evolution and Usefulness,” Wear, Vol. 120, No. 3, 1987, pp. 321-336. doi:10.1016/0043-1648(87)90025-1
[36] G. I. Taylor, “Plastic Strain in Metals,” Journal of the Institute of Metals, Vol. 62, 1938, pp. 307-324.
[37] J. A. C. Martins, J. T. Oden and F. M. F. Simoes, “A Study of Static and Kinetic Friction,” International Journal of Engineering Sciences, Vol. 28, No. 1, 1990, pp. 2992. doi:10.1016/0020-7225(90)90014-A
[38] B. A. Hélouvry, P. Dupont and C. C. D. Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatica, Vol. 30, No. 7, 1994, pp. 1083-1138. doi:10.1016/0005-1098(94)90209-7
[39] D. P. Hess and A. Soom, “Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities,” Journal of Tribology, Vol. 112, No. 1, 1990, pp. 147-152. doi:10.1115/1.2920220
[40] R. Benzing, I. Goldblatt and V. Hopkins, et al., “Friction and Wear Devices,” 2nd Edition, ASLE, IL Park Ridge, 1976.
[41] K. Ogawa, “Impact Friction Test Method by Applying Stress Wave,” Experimental Mechanics, Vol. 37, No. 4, 1997, pp. 398-402. doi:10.1007/BF02317304
[42] V. Prakash, “Time Resolved Friction with Applications to High Speed Machining,” Tribology Transactions, Vol. 41, No. 2, 1998, pp. 189-198. doi:10.1080/10402009808983738
[43] S. Rajagopalan and V. Prakash, “A Modified Torsional Kolsky Bar for Investigating Dynamic Friction,” Experimental Mechanics, Vol. 39, No. 4, 1999, pp. 295-303. doi:10.1007/BF02329808
[44] H. Zhang, A. Patanella and H. D. Espinosa, et al., “Dynamic Friction of Nano-Materials,” AIP Conference Proceedings, Vol. 505, No. 1, 2000, pp. 1225-1228. doi:10.1063/1.1303682
[45] H. D. Espinosa, A. Patanella and M. Fischer, “A Novel Dynamic Friction Experiment Using a Modified Kolsky Bar Apparatus,” Experimental Mechanics, Vol. 40, No. 2, 2000, pp. 138-153. doi:10.1007/BF02325039
[46] Y. L. Lin, F. Y. Lu and Y. X. Cui, “Testing of Friction Coefficients of Material Loaded by Shock Wave,” Tribology, Vol. 27, No. 1, 2007, pp. 64-67. (in Chinese)

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.