Urate Transporter 1 Protein Levels and Localization in Type 2 Diabetic and Non-Diabetic Zucker Rat Kidneys

DOI: 10.4236/ojemd.2013.31010   PDF   HTML   XML   3,813 Downloads   6,887 Views  

Abstract

Objective: Persons with type 2 diabetes have increased incidence of hyperuricemia and gout. The hypothesis that Urate transporter 1 (URAT1) levels are increased in type 2 diabetic Zucker rats and this is responsible for elevation of uric acid was tested. Methods: Male 12-week-old obese Zucker rats were compared to non-diabetic lean counterparts. Plasma glucose, uric acid and creatinine were measured. URAT1 protein levels in the renal cortex and medulla were determined by Western blot. Immunohistochemistry was used to determine the location of URAT1 inrenal tubules. Results: Plasma glucose and uric acid levels were higher in the diabetic rats. There was no difference in plasma createnine. URAT1 antibody-positive bands of 27, 31, 50, 62 and 70 kDa were observed in cortex. A similar pattern was observed in medulla with addition of a 44 kDa band. No differences were observed in URAT1 proteins in the cortex between obese and lean rats. In the medulla, expression of the 44 and 50 kDa proteins was higher in lean rats. Expression of 27, 50, 62 kDa URAT1 proteins in the cortex was higher than in the medulla, while expression of the 70 kDa URAT1 was higher in medulla than in cortex. Localization of URAT1 did not differ between groups and included tubules in both cortex and medulla. Conclusions: In male Zucker rats, URAT1 protein expression was observed in both kidney cortex and medulla. Uric acid elevation in the obese group was associated with decreases in the 44 and 50 kDa URAT1 proteins in renal medulla.


Share and Cite:

Y. Slyvka, F. V. Nowak, W. Matthew Wooten, K. D. McCall, R. Malgor, A. S. Wood and S. R. Inman, "Urate Transporter 1 Protein Levels and Localization in Type 2 Diabetic and Non-Diabetic Zucker Rat Kidneys," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 1, 2013, pp. 63-68. doi: 10.4236/ojemd.2013.31010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Constantinescu and H. Zetterberg, “Urate as a Marker of Development and Progression in Parkinson’s Disease,” Drugs Today, Vol. 47, No. 5, 2011, pp. 369-380.
[2] P. Fuhua, D. Xuhui, Z. Zhiyang, J. Ying, Y. Yu, T. Feng, L. Jia, G. Lijia and H. Xueqiang, “Antioxidant Status of Bilirubin and Uric Acid in Patients with Myasthenia Gravis,” Neuroimmunomodulation, Vol. 19, No. 1, 2012, pp. 43-49. doi:10.1159/000327727
[3] A. Taniguchi and N. Kamatani, “Control of Renal Uric Acid Excretion and Gout,” Current Opinion in Rheumatology, Vol. 20, No. 2, 2008, pp. 192-197. doi:10.1097/BOR.0b013e3282f33f87
[4] M. Hamburger, H. S. Baraf, T. C. Adamson, J. Basile, L. Bass, B. Cole, P. P. Doghramji, G. A. Guadagnoli, F. Hamburger and R. Harford, “2011 Recommendations for the Diagnosis and Management of Gout and Hyperuricemia,” The Physician and Sportsmedicine, Vol. 39, No. 4, 2011, pp. 98-123. doi:10.3810/psm.2011.11.1946
[5] H. M. Lai, C. J. Chen, B. Y. Su, Y. C. Chen, S. F. Yu, J. H. Yen, M. C. Hsieh, T. T. Cheng and S. J. Chang, “Gout and Type 2 Diabetes Have a Mutual Inter-Dependent Effect on Genetic Risk Factors and Higher Incidences,” Rheumatology (Oxford), Vol. 51, No. 4, 2011, pp. 715-720.
[6] F. Viazzi, G. Leoncini and R. Pontremoli, “Cardiovascular and Renal Effects of Hyperuricaemia and Gout,” Reumatismo, Vol. 63, No. 4, 2012, pp. 253-262. doi:10.4081/reumatismo.2011.253
[7] R. J. Johnson, M. A. Lanaspa and E. A. Gaucher, “Uric Acid: A Danger Signal from the RNA World that May Have a Role in the Epidemic of Obesity, Metabolic Syndrome, and Cardiorenal Disease: Evolutionary Considerations,” Seminars in Nephrology, Vol. 31, No. 5, 2011, pp. 394-399. doi:10.1016/j.semnephrol.2011.08.002
[8] A. Enomoto, H. Kimura, A. Chairoungdua, Y. Shigeta, P. Jutabha, S. H. Cha, M. Hosoyamada, M. Takeda, T. Sekine and T. Igarashi, “Molecular Identification of a Renal Urate Anion Exchanger that Regulates Blood Urate Levels,” Nature, Vol. 417, No. 6887, 2002, pp. 447-452.
[9] T. Kimura, S. Amonpatumrat, A. Tsukada, T. Fukutomi, P. Jutabha, T. Thammapratip, E. J. Lee, K. Ichida, N. Anzai and H. Sakurai, “Increased Expression of SLC2A9 Decreases Urate Excretion from the Kidney,” Nucleosides Nucleotides Nucleic Acids, Vol. 30, No. 12, 2011, pp. 1295-1301. doi:10.1080/15257770.2011.628354
[10] K. Ichida, “What Lies behind Serum Urate Concentration? Insights from Genetic and Genomic Studies,” Genome Medicine, Vol. 1, No. 12, 2009, p. 118. doi:10.1186/gm118
[11] A. So and B. Thorens, “Uric Acid Transport and Disease,” Journal of Clinical Investigation, Vol. 120, No. 6, 2010, pp. 1791-1799. doi:10.1172/JCI42344
[12] N. Anzai and H. Endou, “Urate Transporters: An Evolving Field,” Seminars in Nephrology, Vol. 31, No. 5, 2011, pp. 400-409. doi:10.1016/j.semnephrol.2011.08.003
[13] M. A. Hediger, R. J. Johnson, H. Miyazaki and H. Endou, “Molecular Physiology of Urate Transport,” Physiology (Bethesda), Vol. 20, No. 2, 2005, pp. 125-133.
[14] M. Doshi, Y. Takiue, H. Saito and M. Hosoyamada, “The Increased Protein Level of URAT1 Was Observed in Obesity/Metabolic Syndrome Model Mice,” Nucleosides Nucleotides Nucleic Acids, Vol. 30, No. 12, 2011, pp. 1290-1294. doi:10.1080/15257770.2011.603711
[15] Z. Miao, S. Yan, J. Wang, B. Wang, Y. Li, X. Xing, Y. Yuan, D. Meng, L. Wang and J. Gu, “Insulin Resistance Acts as an Independent Risk Factor Exacerbating High-Purine Diet Induced Renal Injury and Knee Joint Gouty Lesions,” Inflammation Research, Vol. 58, No. 10, 2009, pp. 659-668. doi:10.1007/s00011-009-0031-9
[16] T. M. Coimbra, U. Janssen, H. J. Grone, T. Ostendorf, U. Kunter, H. Schmidt, G. Brabant and J. Floege, “Early Events Leading to Renal Injury in Obese Zucker (Fatty) Rats with Type II Diabetes,” Kidney International, Vol. 57, No. 1, 2000, pp. 167-182. doi:10.1046/j.1523-1755.2000.00836.x
[17] P. N. Chander, O. Gealekman, S. V. Brodsky, S. Elitok, A. Tojo, M. Crabtree, S. S. Gross and M. S. Goligorsky, “Nephropathy in Zucker Diabetic Fat Rat Is Associated with Oxidative and Nitrosative Stress: Prevention by Chronic Therapy with a Peroxynitrite Scavenger Ebselen,” Journal of the American Society of Nephrology, Vol. 15, No. 9, 2004, pp. 2391-2403. doi:10.1097/01.ASN.0000135971.88164.2C
[18] E. Ionescu, J. F. Sauter and B. Jeanrenaud, “Abnormal Oral Glucose Tolerance in Genetically Obese (Fa/Fa) Rats,” American Journal of Physiology, Vol. 248, No. 5, 1985, pp. 500-506.
[19] M. Hosoyamada, Y. Takiue, T. Shibasaki and H. Saito, “The Effect of Testosterone upon the Urate Reabsorptive Transport System in Mouse Kidney,” Nucleosides Nucleotides Nucleic Acids, Vol. 29, No. 7, 2010, pp. 574-579. doi:10.1080/15257770.2010.494651
[20] Y. Takiue, M. Hosoyamada, M. Kimura and H. Saito, “The Effect of Female Hormones upon Urate Transport Systems in the Mouse Kidney,” Nucleosides Nucleotides Nucleic Acids, Vol. 30, No. 2, 2011, pp.113-119. doi:10.1080/15257770.2010.551645
[21] Y. Slyvka, S. R. Inman, R. Malgor, E. J. Jackson, J. Yee, O. Oshogwemoh, J. Adame and F. V. Nowak, “Protective Effects of Antioxidant-Fortified Diet on Renal Function and Metabolic Profile in Obese Zucker Rat,” Endocrine, Vol. 35, No. 1, 2009, pp. 89-100. doi:10.1007/s12020-008-9121-7
[22] V. Tugcu, M. Bas, E. Ozbek, E. Kemahli, Y. V. Arinci, M. Tuhri, T. Altug and A. I. Tasci, “Pyrolidium Dithiocarbamate Prevents Shockwave Lithotripsy-Induced Renal Injury through Inhibition of Nuclear Factor-Kappa B and Inducible Nitric Oxide Synthase Activity in Rats,” Journal of Endourology, Vol. 22, No. 3, 2008, pp. 559-566. doi:10.1089/end.2007.0295
[23] A. J. Collins, R. N. Foley, B. Chavers, D. Gilbertson, C. Herzog, K. Johansen, B. Kasiske, N. Kutner, J. Liu and W. Peter, “United States Renal Data System 2011 Annual Data Report: Atlas of Chronic Kidney Disease & End-Stage Renal Disease in the United States,” American Journal of Kidney Diseases, 2012, Vol. 59, Suppl. 1, pp. 1-420.
[24] T. Gibson, “Hyperuricemia, Gout and the Kidney,” Current Opinion in Rheumatology, Vol. 24, No. 2, 2012, pp. 127-131. doi:10.1097/BOR.0b013e32834f049f
[25] S. A. Eraly, V. Vallon, T. Rieg, J. A. Gangoiti, W. R. Wikoff, G. Siuzdak, B. A. Barshop and S. K. Nigam, “Multiple Organic Anion Transporters Contribute to Net Renal Excretion of Uric Acid,” Physiological Genomics, Vol. 33, No. 2, 2008, pp. 180-192. doi:10.1152/physiolgenomics.00207.2007
[26] G. Calabrese, H. A. Simmonds, J. S. Cameron and P. M. Davies, “Precocious Familial Gout with Reduced Fractional Urate Clearance and Normal Purine Enzymes,” The Quarterly Journal of Medicine, Vol. 75, No. 277, 1990, pp. 441-450.
[27] N. Anzai, P. Jutabha, S. Amonpatumrat-Takahashi and H. Sakurai, “Recent Advances in Renal Urate Transport: Characterization of Candidate Transporters Indicated by Genome-Wide Association Studies,” Clinical and Experimental Nephrology, Vol. 16, No. 1, 2012, pp. 89-95. doi:10.1007/s10157-011-0532-z
[28] H. J. Shin, M. Takeda, A. Enomoto, M. Fujimura, H. Miyazaki, N. Anzai and H. Endou, “Interactions of Urate Transporter URAT1 in Human Kidney with Uricosuric Drugs,” Nephrology (Carlton), Vol. 16, No. 2, 2011, pp. 156-162. doi:10.1111/j.1440-1797.2010.01368.x
[29] E. T. de Lemos, F. Reis, S. Baptista, R. Pinto, B. Sepodes, H. Vala, P. Rocha-Pereira, G. C. da Silva, N. Teixeira and A. S. Silva, “Exercise Training Decreases Proinflammatory Profile in Zucker Diabetic (Type 2) Fatty Rats,” Nutrition, Vol. 25, No. 3, 2009, pp. 330-339. doi:10.1016/j.nut.2008.08.014
[30] Y. Li, Y. Qi, M. S. Kim, K. Z. Xu, T. H. Huang, X. Rong, M. Murray and J. Yamahara, “Increased Renal Collagen Cross-Linking and Lipid Accumulation in Nephropathy of Zucker Diabetic Fatty Rats,” Diabetes/Metabolism Research and Reviews, Vol. 24, No. 6, 2008, pp. 498-506. doi:10.1002/dmrr.874
[31] M. Hosoyamada, K. Ichida, A. Enomoto, T. Hosoya and H. Endou, “Function and Localization of Urate Transporter 1 in Mouse Kidney,” Journal of the American Society of Nephrology, Vol. 15, No. 2, 2004, pp. 261-268. doi:10.1097/01.ASN.0000107560.80107.19
[32] F. Zhou and G. You, “Molecular Insights into the Structure-Function Relationship of Organizanion Transporters OATs,” Pharmaceutical Research, Vol. 24, No. 1, 2007, pp. 28-36. doi:10.1007/s11095-006-9144-9
[33] N. Anzai, Y. Kanai and H. Endou, “Organic Anion Transporter Family: Current Knowledge,” Journal of Pharmacological Sciences, Vol. 100, No. 5, 2006, pp. 411-426. doi:10.1254/jphs.CRJ06006X
[34] K. Kuze, P. Graves, A. Leahy, P. Wilson, H. Stuhlmann and G. You, “Heterologous Expression and Functional Characterization of a Mouse Renal Organic Anion Transporter in Mammalian Cells,” The Journal of Biological Chemistry, Vol. 274, No. 3, 1999, pp. 1519-1524. doi:10.1074/jbc.274.3.1519
[35] K. Tanaka, W. Xu, F. Zhou and G. You, “Role of Glycosylation in the Organic Anion Transporter OAT1,” The Journal of Biological Chemistry, Vol. 79, No. 15, 2004, pp. 14961-14966. doi:10.1074/jbc.M400197200
[36] M. Sato, T. Wakayama, H. Mamada, Y. Shirasaka, T. Nakanishi and I. Tamai, “Identification and Functional Characterization of Uric Acid Transporter Urat1 (Slc22a12) in Rats,” Biochimica et Biophysica Acta, Vol. 1808, No. 6, 2011, pp. 1441-1447. doi:10.1016/j.bbamem.2010.11.002
[37] A. Sanchez-Pla, F. Reverter, M. C. R. de Villa and M. Comabella, “Transcriptomics: mRNA and Alternative Splicing,” Journal of Neuroimmunology, Vol. 248, No. 1-2, 2012, pp. 23-31.
[38] M. Montes, S. Becerra, M. Sanchez-Alvarez and C. Sune, “Functional Coupling of Transcription and Splicing,” Gene, Vol. 501, No. 2, 2012, pp. 104-117. doi:10.1016/j.gene.2012.04.006
[39] S. Cirrik, B. U. Yavuzer and G. Oner, “Exercise-Induced Changes in Renal Urat1 Activity and Expression in Rats,” Renal Failure, Vol. 32, No. 7, 2010, pp. 855-862. doi:10.3109/0886022X.2010.494805
[40] C. N. Niland, C. R. Merry and A. M. Khalil, “Emerging Roles for Long Non-Coding RNAs in Cancer and Neurological Disorders,” Frontiers in Genetics, Vol. 3, No. 3, 2012, p. 25.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.