Share This Article:

Quantile Regression Based on Semi-Competing Risks Data

Abstract Full-Text HTML XML Download Download as PDF (Size:379KB) PP. 12-26
DOI: 10.4236/ojs.2013.31003    4,228 Downloads   6,884 Views   Citations

ABSTRACT

This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1].

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Hsieh, A. Ding, W. Wang and Y. Chi, "Quantile Regression Based on Semi-Competing Risks Data," Open Journal of Statistics, Vol. 3 No. 1, 2013, pp. 12-26. doi: 10.4236/ojs.2013.31003.

References

[1] J. P. Klein and M. L. Moeschberger, “Survival Analysis: Techniques for Censored and Truncated Data,” 2nd Edition, Springer, New York, 2003.
[2] J. Powell, “Least Absolute Deviations Estimation for the Censored Regression Model,” Journal of Econometrics, Vol. 25, No. 3, 1984, pp. 303-325. doi:10.1016/0304-4076(84)90004-6
[3] J. Powell, “Censored Regression Qunatiles,” Journal of Econometrics, Vol. 32, No. 1, 1986, pp. 143-155. doi:10.1016/0304-4076(86)90016-3
[4] B. Fitzenberger, “A Guide to Censored Quantile Regressions,” In: G. S. Maddala and C. R. Rao, Eds., Hand- books of Statistics, North-Holland, Amsterdam, 1997, pp. 405-437. doi:10.1016/S0169-7161(97)15017-9
[5] M. Buchinsky and J. Hahn, “A Alternative Estimator for Censored Quantile Regression,” Econometrica, Vol. 66, No. 3, 1998, pp. 653-671. doi:10.2307/2998578
[6] Z. Ying, S. H. Jung and L. J. Wei, “Survival Analysis with Median Regression Models,” Journal of the American Statistical Association, Vol. 90, No. 429, 1995, pp. 178-184. doi:10.1080/01621459.1995.10476500
[7] S. Yang, “Censored Median Regression Using Weighted Empirical Survival and Hazard Functions,” Journal of the American Statistical Association, Vol. 94, No. 445, 1999, pp. 137-145. doi:10.1080/01621459.1999.10473830
[8] S. Portnoy, “Censored Regression Quantiles,” Journal of the American Statistical Association, Vol. 98, No. 464, 2003, pp. 1001-1012. doi:10.1198/016214503000000954
[9] L. Peng and Y. Huang, “Survival Analysis Based on Quantile Regression Models,” Journal of the American Statistical Association, Vol. 103, No. 482, 2008, pp. 637- 649. doi:10.1198/016214508000000355
[10] G. Yin, D. Zeng and H. Li, “Power Transformed Linear Quantile Regression with Censored Data,” Journal of the American Statistical Association, Vol. 103, No. 483, 2008, pp. 1214-1224. doi:10.1198/016214508000000490
[11] S. Portnoy and G. Lin, “Asymptotics for Censored Regression Quantiles,” Journal of Nonparametric Statistics, Vol. 22, No. 1, 2010, pp. 115-130. doi:10.1080/10485250903105009
[12] J. P. Fine, H. Jiang and R. Chappell, “On Semi-Competing Risks Data,” Biometrika, Vol. 88, No. 4, 2001, pp. 907-919.
[13] L. Peng and J. P. Fine, “Competing Risks Quantile Regression,” Journal of the American Statistical Association, Vol. 104, No. 488, 2009, pp. 1440-1453. doi:10.1198/jasa.2009.tm08228
[14] R. Li and L. Peng, “Quantile Regression for Left-Truncated Semicompeting Risks Data,” Biometrics, Vol. 67 No. 3, 2011, pp. 701-710. doi:10.1111/j.1541-0420.2010.01521.x
[15] A. J. Patton, “Modeling Asymmetric Exchange Rate Dependence,” International Economic Review, Vol. 47, No. 2, 2006, pp. 527-556. doi:10.1111/j.1468-2354.2006.00387.x
[16] W. Wang, “Estimating the Association Parameter for Copula Models under Dependent Censoring,” Journal of the Royal Statistical Society, Series B, Vol. 65, No. 1, 2003, pp. 257-273. doi:10.1111/1467-9868.00385
[17] L. Lakhal, L.-P. Rivest and B. Abdous, “Estimating Survival and Association in a Semicompeting Risks Model,” Biometrics, Vol. 64, No. 1, 2008, pp. 180-188. doi:10.1111/j.1541-0420.2007.00872.x
[18] M. Fygenson and Y. Ritov, “Monotone Estimating Equations for Censored Data,” The Annals of Statistics, Vol. 22, No. 2, 1994, pp. 732-746. doi:10.1214/aos/1176325493
[19] L.-P. Rivest and M. Wells, “A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring,” Journal of Multivariate Analysis, Vol. 79, No. 1, 2001, pp. 138-155. doi:10.1006/jmva.2000.1959
[20] J. X. Zheng, “A Consistent Nonparametric Regression Models under Quantile Restrictions,” Econometric Theory, Vol. 14, No. 1, 1998, pp. 123-138. doi:10.1017/S0266466698141051
[21] J. L. Horowitz and V. G. Spokoiny, “An Adaptive, RateOptimal Test of Linearity for Median Regression Models,” Journal of the American Statistical Association, Vol. 97, No. 459, 2002, pp. 822-835. doi:10.1198/016214502388618627
[22] X. He and L. Zhu, “A Lack-of-Fit Test for Quantile Regression,” Journal of the American Statistical Association, Vol. 98, No. 464, 2003, pp. 1013-1022. doi:10.1198/016214503000000963
[23] D. Y. Lin and L. J. Wei and Z. Ying, “Checking the Cox Model with Cumulative Sums of Martingle-Based Residuals,” Biometrika, Vol. 80, No. 3, 1993, pp. 557-572. doi:10.1093/biomet/80.3.557
[24] R. Braekers and N. Veraverbeke, “A Copula-Graphic Estimator for the Conditional Survival Function under Dependent Censoring,” The Canadian Journal of Statistics, Vol. 33, No. 3, 2005, pp. 429-447. doi:10.1002/cjs.5540330308

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.