A Molecular Dynamics Simulation Study of Two Dipeptide Based Molecular Micelles: Effect of Amino Acid Order


Molecular dynamics (MD) simulations were used to compare the structures of the chiral molecular micelles (MM) poly-(sodium undecyl-(L,L)-leucine-valine) (poly(SULV)) and poly-(sodium undecyl-(L,L)-valine-leucine) (poly (SUVL)). Both MM contained polymerized surfactant monomers terminated by chiral dipeptide headgroups. The study was undertaken to investigate why poly(SULV) is generally a better chiral selector compared to poly(SUVL) in electrokinetic chromatography separations. When comparing poly(SULV) to poly(SUVL), poly(SULV) had the more conformational flexible dipeptide headgroup and hydrogen bond analyses revealed that the poly(SULV) headgroup conformation allowed a larger number of intramolecular hydrogen bonds to form between monomer chains. In addition, a larger number of water molecules surrounded the chiral centers of the poly(SULV) molecular micelle. Poly(SULV) was also found to have a larger solvent accessible surface area (SASA) than poly(SUVL) and fluctuations in the poly(SULV) SASA during the MD simulation allowed dynamic monomer chain motions expected to be important in chiral recognition to be identified. Finally, approximately 50% of the Na+ counterions were found in the first three solvation shells surrounding both MM, with the remainder located in the bulk. Overall the MD simulations point to both greater headgroup flexibility and solvent and analyte access to the chiral centers of the dipeptide headgroup as factors contributing to the enhanced chiral selectivity observed with poly(SULV).

Share and Cite:

K. F. Morris, E. J. Billiot, F. H. Billiot, K. B. Lipkowitz, W. M. Southerland and Y. Fang, "A Molecular Dynamics Simulation Study of Two Dipeptide Based Molecular Micelles: Effect of Amino Acid Order," Open Journal of Physical Chemistry, Vol. 3 No. 1, 2013, pp. 20-29. doi: 10.4236/ojpc.2013.31004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] FDA Policy Statement for the Development of New Stereoisomeric Drugs, US Food and Drug Administration, Center for Drug Evaluation and Research, Department of Health and Human Services, 1992.
[2] G. Subramanian, “Chiral Separation Techniques,” 3rd Edition, Wiley-VCH, New York, 2007.
[3] T. J. Ward and K. D. Ward, “Chiral Separations: Fundamental Review,” Analytical Chemistry, Vol. 82, No. 12, 2010, pp. 4712-4722. doi:10.1021/ac1010926
[4] B. C. Valle, K. F. Morris, K. A. Fletcher, V. Fernand, D. M. Sword, S. Eldridge, C. K. Larive and I. M. Warner, “Understanding Chiral Molecular Micellar Separations Using Steady-State Fluorescence Anisotropy, Capillary Electrophoresis, and NMR,” Langmuir, Vol. 23, No. 2, 2007, pp. 425-435. doi:10.1021/la0612623
[5] L. Sanchez-Hernandez, M. Castro-Puyana, M. L. Marina and A. L. Crego, “Recent Approaches in Sensitive Enantioseparations by CE,” Electrophoresis, Vol. 33, No. 1, 2012, pp. 228-242. doi:10.1002/elps.201100404
[6] J. Wang and I. M. Warner, “Chiral Separations Using Micellar Electrokinetic Capillary Chromatography and a Polymerized Chiral Micelle,” Analytical Chemistry, Vol. 66, No. 21, 1994, pp. 3773-3776. doi:10.1021/ac00093a037
[7] S. J. Thibodeaux, E. J. Billiot and I. M. Warner, “Enantiomeric Separations Using Poly(L-Valine) and Poly(L-Leucine) Surfactants: Investigation of Steric Factors Near the Chiral Center,” Journal of Chromatography A, Vol. 966, No. 1-2, 2002, pp. 179-186. doi:10.1016/S0021-9673(02)00747-1
[8] E. J. Billiot and I. M. Warner, “Examination of Structural Changes of Polymeric Amino Acid-Based Surfactants on Enantioselectivity: Effect of Amino Acid Order, Steric Factors, and Number and Position of Chiral Centers,” Analytical Chemistry, Vol. 72, No. 8, 2000, pp. 1740-1748. doi:10.1021/ac9908804
[9] E. J. Billiot, R. A. Agbaria, S. A. Shamsi and I. M. Warner, “Amino Acid Order in Polymeric Dipeptide Surfactants: Effect on Physical Properties and Enantioselectivity,” Analytical Chemistry, Vol. 71, No. 7, 1999, pp. 1252-1256. doi:10.1021/ac980461r
[10] F. H. Haddadian, E. J. Billiot, S. A. Shamsi and I. M. Warner, “Chiral Separations using Polymeric Dipeptide Surfactants: Effect of Number of Chiral Centers and Steric Factors,” Journal of Chromatography A, Vol. 858, 1999, pp. 219-227. doi:10.1016/S0021-9673(99)00810-9
[11] S. J. Thibodeaux, E. J. Billiot and I. M. Warner, “Enantiomeric Separations Using Polymeric L-Glutamate Surfactant Derivatives: Effect of Increasing Steric Factors,” Electrophoresis, Vol. 24, No. 6, 2003, pp. 1077-1082. doi:10.1002/elps.200390125
[12] F. Haddadian-Billiot, M. E. McCarroll, E. J. Billiot, J. K. Rugutt, K. F. Morris and I. M. Warner, “Comparison of the Aggregation Behavior of 15 Polymeric and Monomeric Dipeptide Surfactants in Aqueous Solution,” Langmuir, Vol. 18, No. 8, 2002, pp. 2993-2997. doi:10.1021/la0110592
[13] J. L. Haynes III, E. J. Billiot, H. H. Yarabe, S. A. Shamsi and I. M. Warner, “Chiral Separation with Dipeptide-Terminated Polymeric Surfactants: The Effect of an Extra Heteroatom on the Polar Head Group,” Electrophoresis, Vol. 21, No. 8, pp. 1597-1605. doi:10.1002/(SICI)1522-2683(20000501)21:8<1597::AID-ELPS1597>3.0.CO;2-L
[14] J. K. Rugutt, E. J. Billiot and I. M. Warner, “NMR Study of the Interaction of Monomeric and Polymeric Chiral Surfactants with (R)- and (S)-1,1‘-Binaphthyl-2,2‘- diyl Hydrogen Phosphate,” Langmuir, Vol. 16, No. 7, 2000, pp. 3022-3029. doi:10.1021/la990539e
[15] E. J. Billiot, J. Macossay, S. J. Thibodeaux, S. A. Shamsi and I. M Warner, “Chiral Separations Using Dipeptide Polymerized Surfactants: Effect of Amino Acid Order,” Analytical Chemistry, Vol. 70, No. 7, 1998, pp. 1375-1381. doi:10.1021/ac9709561
[16] C. W. Harrell, K. F. Morris, M. E. McCarroll, E. J. Billiot and I. M. Warner, “Fluorescence and Nuclear Magnetic Resonance Spectroscopic Studies of the Effect of the Polymerization Concentration on the Properties of an Amino Acid-Based Polymeric Surfactant,” Langmuir, Vol. 19, No. 26, 2003, pp. 10684-10691. doi:10.1021/la0348362
[17] F. Haddadian-Billiot, E. J. Billiot and I. M. Warner, “Depth of Penetration of Binaphthyl Derivatives into the Micellar Core of Sodium Undecenoyl Leucyl-Leucinate Surfactants,” Journal of Chromatography A, Vol. 950, No. 1-2, 2002, pp. 233-239. doi:10.1016/S1570-0232(02)00008-9
[18] K. F. Morris, B. A. Becker, B. C. Valle, I. M. Warner and C. K. Larive, “Use of NMR Binding Interaction Mapping Techniques to Examine Interactions of Chiral Molecules with Molecular Micelles,” Journal of Physical Chemistry B, Vol. 110, No. 35, 2006, pp. 17359-17369. doi:10.1021/jp0627224
[19] S. A. Kingsbury, C. J. Ducommun, B. M. Zahakaylo, E. H. Dickinson and K. F. Morris, “NMR Characterization of 1,1’-Binaphthyl-2,2’-Diyl Hydrogen Phosphate Binding to Chiral Molecular Micelles,” Magnetic Resonance in Chemistry, Vol. 48, No. 3, 2010, pp. 184-191.
[20] H. H. Yarabe, S. A. Shamsi and I. M Warner, “Characterization and Thermodynamic Studies of the Interactions of Two Chiral Polymeric Surfactants with Model Substances: Phenylthiohydantoin Amino Acids,” Analytical Chemistry, Vol. 71, No. 18, 1999, pp. 3992-3999. doi:10.1021/ac990212i
[21] S. A. Shamsi, B. C. Valle, F. H. Billiot and I. M. Warner, “Polysodium N-Undecanoyl-l-Leucylvalinate: A Versatile Chiral Selector for MicellarElectrokinetic Chromatography,” Analytical Chemistry, Vol. 75, No. 3, 2003, pp. 379-387. doi:10.1021/ac020386r
[22] K. F. Morris, E. J. Billiot, F. H. Billiot, K. B. Lipkowitz, W. H. Southerland and Y. Fang, “Investigation of Chiral Molecular Micelles by NMR Spectroscopy and Molecular Dynamics Simulation,” Open Journal of Physical Chemistry, Vol. 2, No. 4, 2012, pp. 240-251.
[23] E. J. Billiot, “Chiral Recognition with Polymerized Dipeptide Surfactants in Capillary Electrophoresis,” Ph.D. Dissertation, Louisiana State University, Baton Rouge, 1998.
[24] D. A. Case, T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin and P.A. Kollman, AMBER 10, University of California, San Francisco, 2008.
[25] J. Wang, P. Cieplak and P. A. Kollman, “How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?” Journal of Computational Chemistry, Vol. 21, No. 12, 2000, pp. 1049-1074. doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
[26] C. D. Bruce, M. L. Berkowitz, L. Perera and M. D. E. Forbes, “Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution,” Journal of Physical Chemistry B, Vol. 106, No. 15, 2002, pp. 3788-3793. doi:10.1021/jp013616z
[27] R. S. Hickok, S. A. Wedge, A. L. Hansen, K. F. Morris, F. H. Billiot and I. M. Warner, “Pulsed Field Gradient NMR Investigation of Solubilization Equilibria in Amino Acid and Dipeptide Terminated Micellar and Polymeric Surfactant Solutions,” Magnetic Resonance in Chemistry, Vol. 40, No. 12, 2002, pp. 755-761. doi:10.1002/mrc.1099

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.