In vivo study of biomechanical properties in psoriasis vulgaris: Effectiveness of sulfur spa therapy

Abstract

Psoriasis is a prolonged inflammation of the skin. The causes of psoriasis are still unclear. The treatment options depend on the severity of the disease and may include topical agents (such as topically-applied drugs, sulfur spa therapy, phototherapy) and systemic agents (orally or percutaneously administered). The aim of this study was to investigate the mechanical properties of the skin in psoriatic plaques before and after treatment with sulfur therapy (Thermae Luigiane, Guardia Piemontese—Acquappesa, Italy), in comparison with the skin of healthy subjects. The study has been performed on 20 psoriatic plaques (10 on upper arm, 10 on upper back) and 10 control subjects (healthy males aged 47 ± 15). The efficacy of sulfur therapy was observed through the evaluation of the biomechanical properties of the skin. Investigation was performed with a Skin meter, an instrument useful to determine the physiological parameters by the means of a suction method, a non-invasive in vivo suction. The apparatus was equipped with 2-mm measuring probe. Unlike the optical method, in our test the color and/or distribution of the skin micro-circulation didn’t interfere with the measurement. The evaluation of mechanical properties of the psoriatic plaques after treatment showed a significative recovery of the parameters analysed, with an increase of the elasticity parameters (Ur, Ua, Ua/Uf, Ur/Uf) and a decrease of the viscoelasticity module (Uv/Ue).

Share and Cite:

Mazzulla, S. , Nicoletta, V. , Perrotta, I. , Stefano, S. and Sesti, S. (2013) In vivo study of biomechanical properties in psoriasis vulgaris: Effectiveness of sulfur spa therapy. Open Journal of Molecular and Integrative Physiology, 3, 15-20. doi: 10.4236/ojmip.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Rashmi, R.K., Rao, S.J. and Basavaraj K.H. (2009) A comprehensive review of biomarkers in psoriasis. Clinical and Experimental Dermatology, 34, 658-663. doi:10.1111/j.1365-2230.2009.03410.x
[2] Schon, M.P. and Boehncke, W.H. (2005) Medical progress: Psoriasis. New England Journal of Medicine, 352, 1899-1912. http://www.nejm.org/doi/pdf/10.1056/NEJMra041320
[3] Mazzulla, S., Chimenti, R., Sesti, S., De Stefano, S., Morrone, M. and Martino, G. (2004) Effect of sulphurous Bioglea on psoriasis. Clinica Terapeutica, 155, 499-504.
[4] Mazzulla, S., Sesti, Martini, A., Nicoletta, V., S., De Stefano, S., Morrone, M. and Martino, G. (2011) Evaluation of natural reductants protecting red blood cell membranes against oxidative damage in psoriatic patients. Clinica Terapeutica, 162, 79-84. http://www.seuroma.it/clinica_terapeutica/apps/autos.php?id=882
[5] Yardley, H.J. and Summerly, R. (1981) Lipid composition and metabolism in normal and diseased epidermis. Pharmacology & Therapeutics, 13, 357-383. doi:10.1016/0163-7258(81)90006-1
[6] Weger, W. (2010) Current status and new developments in the treatment of psoriasis and psoriatic arthritis with biological agents. British Journal of Pharmacology, 160, 810-820. doi:10.1111/j.1476-5381.2010.00702.x
[7] Pathirana, A., Ormerod, A.D., Saiag, P., Smith, C., Spuls, P.I., Nast, A. et al. (2009) European S3-Guidelines on the systemic treatment of psoriasis vulgaris. Journal of the European Academy of Dermatology and Venereology, 23, S5-S70. doi:10.1111/j.1468-3083.2010.03671.x
[8] Smith, C.H., Anstey A.V., Barker, J.N.W.N., Burden, A.D., Chalmers, R.J.G, Chandler, D., et al. (2009). British Association of Dermatologists guidelines for biologic interventions for psoriasis. British Journal of Dermatology, 161, 987-1019. doi:10.1111/j.1365-2133.2009.09505.x
[9] Nagy Papp, K.A., Dekoven, J., Parsons, L., Pirzada, S., Robern, M., Robertson, L. and Tan, J.K. (2012) Biologic therapy in psoriasis: Perspectives on associated risks and patient management. Journal of Cutaneous Medicine and Surgery, 16, 153-168.
[10] Lukács, G.K., Sziray, A., Fazekas, K., Florián, A., Tamási, L. and Károlyi, Z. (2011). Adverse events during biological therapy-focusing on dermatological effects. Orvosi Hetilap, 152, 212-220.
[11] Ohshima, H., Kinoshita, S., Oyobikawa, M., Futagawa, M., Takiwaki, H., Ishiko, A. and Kanto, H. (2012) Use of Cutometer area parameters in evaluating age-related changes in the skin elasticity of the cheek. Skin Research and Technology, 19, 238-242. doi:10.1111/j.1600-0846.2012.00634.x
[12] Tronnier, H., Wiebusch, M. and Heinrich, U. (2008) Change in skin physiological parameters in space-report on and results of the first study on man. Skin Pharmacology and Physiology, 21, 283-292. doi:10.1159/000148045.
[13] Dobrev, H. (2000) In vivo study of skin mechanical properties in psoriasis vulgaris. Acta Dermato-Venereologica, 80, 263-266. doi:10.1080/000155500750012135
[14] Ellis, C.N., Gorsulowsky, D.C., Hamilton, T.A., Billings, J.K., Brown, M.D., Headington, J.T., et al. (1986), Cyclosporine improves psoriasis in a double-blind study. JAMA, 256, 3110-3116. doi:10.1001/jama.1986.03380220076026
[15] Toichi, E., Torres, G., McCormick, T.S., Chang, T., Mascelli, M.A., Kauffmann C.L., et al. (2006). An antiIL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. Journal of Immunology, 177, 4917-4926.
[16] Liu, Y., Krueger, J.G. and Bowcock, A.M. (2007) Psoriasis: Genetic associations and immune system changes. Genes & Immunity, 8, 1-12. doi:10.1038/sj.gene.6364351
[17] Nickoloff, B.J., Qin, J.Z. and Nestle, F.O. (2007). Immunopathogenesis of psoriasis. Clinical Reviews in Allergy and Immunology, 33, 45-56. doi:10.1007/s12016-007-0039-2
[18] Nestle, F.O., Kaplan, D.H. and Barker, J. (2009). Psoriasis. New England Journal of Medicine, 361, 496-509. doi:10.1056/NEJMra0804595
[19] Valitutti, S., Castellino, F. and Musiani, P. (1990) Effect of sulfurous (thermal) water on T lymphocyte proliferative response. Annals of Allergy, 65, 463-468.
[20] Celerier, P., Richard, A., Litoux, P. and Dreno, B. (1995) Modulatory effects of selenium and strontium salts on keratinocyte-derived inflammatory cytokines. Archives of Dermatological Research, 287, 680-682. doi:10.1007/BF00371742
[21] Magitz, H., Orion, E. and Wof, R. (2003) Balneotherapy in dermatology. Dermatologic Therapy, 16, 132-140. doi:10.1046/j.1529-8019.2003.01622.x
[22] Sainte-Laudy, J. (1987) Etude du pouvoir anti-degranulant de l’eau d’Avene vis-à-vis de basophiles humains sensibilièe. International Journal of Immunotherapy, 4, 307-312.
[23] Nasermoaddeli, A. and Kagamimori, S. (2005), Balneotherapy in medicine: A rewiew. Environmental Health and Preventive Medicine, 10, 171-179. doi:10.1007/BF02897707
[24] Mirandola, P., Gobbi, G., Sponzilli, I. and Pambianco, M. (2007) Exogenous hydrogen sulfide induces functional inhibition and cell death of cytotoxic lymphocytes subsets. Journal of Cellular Physiology, 213, 826-833. doi:10.1002/jcp.21151
[25] Dobrev, H. (1999) In vivo study of skin mechanical properties in patients with systemic sclerosis. Journal of the American Academy of Dermatology, 40, 436-442. doi:10.1016/S0190-9622(99)70494-9
[26] Dobrev, H. (1998) In vivo study of skin mechanical properties in scleredema of Buschke. Acta Dermato-Venereologica, 78, 103-106. doi:10.1080/000155598433412
[27] Dobrev, H. (2000) Use of cutometer to assess epidermal hydration. Skin Research and Technology, 6, 239-244. doi:10.1034/j.1600-0846.2000.006004239.x
[28] Ryu, H.S., Joo, Y.H., Kim, S.O., Park, K.C. and Youn, S.W. (2008) Influence of age and regional differences on skin elasticity as measured by the Cutometer?. Skin Research and Technology, 14, 354. doi:10.1111/j.1600-0846.2008.00302.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.