Share This Article:

Analysis of known point mutations and SNPs in genes responsible for monogenic Parkinson’s disease in Russian patients

DOI: 10.4236/apd.2013.21005    4,411 Downloads   7,352 Views  

ABSTRACT

Background: Parkinson’s disease (PD) is caused by complex interactions between genetic and environmental factors. Mendelian forms of PD rarely occur in practice, but respective genes may play some role in pathogenesis of a common sporadic form of the disease. Methods: We analyzed most frequent known point mutations (PMs) and single-nucleotide polymorphisms (SNPs) in genes responsible for monogenic PD in 408 Russian patients, using arrayed primer extension (APEX), real-time PCR, and restriction fragment length polymorphism analysis. Results: We detected only three heterozygous PMs in the PARK2 gene in three non-related patients with early-onset sporadic PD. No association between PD and the studied SNPs was identified. Conclusion: The examined PMs and SNPs in genes responsible for monogenic PD do not contribute significantly to the development of sporadic PD in Russia.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Filatova, E., I. Shadrina, M., Fedotova, E., Ivanova-Smolenskaya, I., Illarioshkin, S., Limborska, S. and Slominsky, P. (2013) Analysis of known point mutations and SNPs in genes responsible for monogenic Parkinson’s disease in Russian patients. Advances in Parkinson's Disease, 2, 28-30. doi: 10.4236/apd.2013.21005.

References

[1] Xiromerisiou, G., Dardiotis, E., Tsimourtou, V., et al. (2010) Genetic basis of Parkinson disease. Neurosurgical Focus, 28, E7. doi:10.3171/2009.10.FOCUS09220
[2] Lesage, S. and Brice, A. (2009) Parkinson’s disease: From monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18, R48-R59. doi:10.1093/hmg/ddp012
[3] Lesage, S. and Brice, A. (2012) Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism and Related Disorders, 18, S66-S70. doi:10.1016/S1353-8020(11)70022-0
[4] Sutherland, G.T., Halliday, G.M., Silburn, P.A., et al. (2009) Do polymorphisms in the familial Parkinsonism genes contribute to risk for sporadic Parkinson’s disease? Movement Disorders, 24, 833-838. doi:10.1002/mds.22214
[5] Illarioshkin, S.N., Ivanova-Smolenskaya, I.A., Markova, E.D., et al. (2000) Lack of alpha-synuclein gene mutations in families with autosomal dominant Parkinson’s disease in Russia. Journal of Neurology, 247, 968-969. doi:10.1007/s004150070056
[6] Illarioshkin, S.N., Shadrina, M.I., Slominsky, P.A., et al. (2007) A common leucine-rich repeat kinase 2 gene mutation in familial and sporadic Parkinson’s disease in Russia. European Journal of Neurology, 14, 413-417. doi:10.1111/j.1468-1331.2007.01685.x
[7] Semenova, E.V., Shadrina, M.I., Slominsky, P.A., et al. (2012) Analysis of PARK2 gene exon rearrangements in Russian patients with sporadic Parkinson’s disease. Movement Disorders, 27, 139-142. doi:10.1002/mds.23901
[8] Hedrich, K., Kann, M., Lanthaler, A.J., et al. (2001) The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism. Human Molecular Genetics, 10, 1649-1656. doi:10.1093/hmg/10.16.1649
[9] Oliveira, S.A., Scott, W.K., Martin, E.R., et al. (2003) Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Annals of Neurology, 53, 624-629. doi:10.1002/ana.10524
[10] Rawal, N., Periquet, M., Lohmann, E., et al. (2003) New parkin mutations and atypical phenotypes in families with autosomal recessive Parkinsonism. Neurology, 60, 1378-1381. doi:10.1212/01.WNL.0000056167.89221.BE
[11] Abbas, N., Lücking, C.B., Ricard, S., et al. (1999) A wide variety of mutations in the parkin gene are responsible for autosomal recessive Parkinsonism in Europe. Human Molecular Genetics, 8, 567-574. doi:10.1093/hmg/8.4.567
[12] Koziorowski, D., Hoffman-Zacharska, D., S?awek, J., et al. (2010) Low frequency of the PARK2 gene mutations in Polish patients with the early-onset form of Parkinson disease. Parkinsonism and Related Disorders, 16, 136-138. doi:10.1016/j.parkreldis.2009.06.010
[13] Vinish, M., Prabhakar, S., Khullar, M., et al. (2010) Genetic screening reveals high frequency of PARK2 mutations and reduced Parkin expression conferring risk for Parkinsonism in North West India. Journal of neurology, neurosurgery, and psychiatry, 81, 166-170. doi:10.1136/jnnp.2008.157255
[14] Wang, M., Hattori, N., Matsumine, H., et al. (1999) Polymorphism in the parkin gene in sporadic Parkinson’s disease. Annals of Neurology, 45, 655-658. doi:10.1002/1531-8249(199905)45:5<655::AID-ANA15>3.0.CO;2-G
[15] Lincoln, S.J., Maraganore, D.M., Lesnick, T.G., et al. (2003) Parkin variants in North American Parkinson’s disease: cases and controls. Movement Disorders, 18, 1306-1311. doi:10.1002/mds.10601
[16] Lücking, C.B., Chesneau, V., Lohmann, E., et al. (2003) Coding polymorphisms in the parkin gene and susceptibility to Parkinson disease. Archives of neurology, 60, 1253-1256. doi:10.1001/archneur.60.9.1253
[17] Martinez, H.R., Gonzalez-Gonzalez, H., Cantu-Martinez, L., et al. (2010) PARKIN-coding polymorphisms are not associated with Parkinson’s disease in a population from northeastern Mexico. Neuroscience Letters, 468, 264-266. doi:10.1016/j.neulet.2009.11.009
[18] Aguiar, P.D.C., Lessa, P.S., Godeiro, C.J., et al. (2008) Genetic and environmental findings in early-onset Parkinson’s disease Brazilian patients. Movement Disorders, 23, 1228-1233. doi:10.1002/mds.22032

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.