// var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
ENG> Vol.5 No.2, February 2013
Share This Article:
Cite This Paper >>

Effect of Clay Fines on the Behavior of Self-Compacting Concrete

Abstract Full-Text HTML XML Download Download as PDF (Size:739KB) PP. 213-218
DOI: 10.4236/eng.2013.52031    3,215 Downloads   5,808 Views   Citations
Author(s)    Leave a comment
Zine Eddine Abib, Haifa Gaher-Abib, Fattoum Kharchi

Affiliation(s)

.

ABSTRACT

The technology of concrete has significantly increased in recent years through the use of super plasticizer and availability of mineral additions. One of the most recent materials used as an additive, replacing a portion of cement in concrete, is fine clay fired at a temperature of 800 to 900℃. This research is based on trials that complied with artificial pozzolan (waste crushed brick), and their effect on the rheological and mechanical behavior of mortar. The addition of 5% of a waste crushed brick has helped not only to improve the strength (tensile and compression), but also to foster a better rheological behavior in terms of fluidity and stability, with a low heat of hydration compared to control. However, tests of optimizing the content of self-compacting concrete (SCC) in coarse aggregates, sand and binder, led us to confirm that the combined mass of more optimal (better workability and stability) is that based on low in volumetric percentage of sand/paste with a granular skeleton richest gravel low dimensions (2/3 of G 3/8 and 1/3 of G 8/15).

KEYWORDS

Waste Crushed Brick; Pozzolanic Activity; Heat of Hydration; Workability; Strength; Self Compacting Concrete

Cite this paper

Z. Abib, H. Gaher-Abib and F. Kharchi, "Effect of Clay Fines on the Behavior of Self-Compacting Concrete," Engineering, Vol. 5 No. 2, 2013, pp. 213-218. doi: 10.4236/eng.2013.52031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Changling, E. Makovicky and B. Osaeck, “Thermal Stability and Pozzolanic Activity of Calcined Kaolin,” Applied Clay Science, Vol. 9, No. 3, 1994, pp. 165-187.
[2] J. Ambroise, M. Murat and J. Pera, “Investigations on Synthetic Binders Obtained by Middle-Temperature Thermal Dissication of Clay Minerals,” Silicates Industries, Vol. 7, No. 8, 1986, pp. 99-107.
[3] U. Chinjemelo and N. Billong, “Activité Pouzzolanique des déChets de Briques et Tuiles Cuite,” African Journal of Science and Technology (AJST) Science and Engineering Series, Vol. 5, No. 1, 2004, pp. 92-100.
[4] K. H. Hayat and K. H. Guizani, “Use of Viscosity Modifying Admixtures to Enchance Stability of Highly Fluid Concrete,” ACI Materials Journal, Vol. 94, No. 4, 1997, pp. 332-340.
[5] K. H. Khayat, J. Bickley and M. Lessard, “Performance of Self-Consolidating Concrete for Casting Basement and Foundation Walls,” ACI Materials Journal, Vol. 97, No. 3, 2000, pp. 374-380.
[6] N. A. Henderson, “Self-Compacting Concrete at Millennium Point,” Concrete, Vol. 34, No. 4, 2000, pp. 26-27.
[7] K. H. Khayat, “Colloques sur les Bétons Autonivelants,” Centre de Recherche Interuniversitaire sur le Béton (CRIB) Université de Sherbrooke, Universitéavall Québec, Québec, 1996.
[8] F. De Larrard, C. F. Ferraris and T. Sedran, “Fresh Concrete: A Hershel Bulkley Material,” Materials and Structures, Vol. 31, No. 7, 1998, pp. 494-498. doi:10.1007/BF02480474
[9] C. F. Ferraris and N. S. Martys, “De la Pate de Ciment au béton: ModéLisation et Mesures Expérimentales des Propriétés Rhéologiques,” Proceedings of 36éme Colloque du Groupe Fran?ais de Rhéologie, Marne la Vallée, 10-12 October 2001, pp. 226-230.
[10] A. Tagnit-Hamou, “Microstructure et Physico-Chimie des Ciments et des Bétons,” Université de Sherbrooke, Québec, Janvier 1995.
[11] Projet National de Recherche Centre d’études et de Recherches de l’Industrie du Béton, “Self-Compacting Concrete,’’ Epernon, October 2001.
[12] M. Yurugi, N. Sakata, M. Iwai and G. Sakai, “Mix Proportion for Highly Workable Concrete,” Proceedings of the International Conference of Concrete, Dundee, 7-9 September 1993, pp. 579-589.
[13] K. H. Khayat, “Viscosity-Enhancing Admixtures for Cement-Based Materials—An Overview,’’ Cement and Concrete Composites, Vol. 20, No. 2-3, 1998, pp. 171-188. doi:10.1016/S0958-9465(98)80006-1
[14] T. Sedran and F. Delarrard, “Mix Design of Self-Compacting Concrete,” Proceedings of the International RILEM Conference on Production Methods and Workability of Concrete, Paisley, June 1996, pp. 439-450.
[15] N. Miura, N. Takeda, R. Chikamatsu and S. Sogo, “Application of Super Workable Concrete to Reinforced Concrete Structure with Difficult Construction Conditions,” American Concrete Institute, Vol. 140, 1993, pp. 163-186.

  
comments powered by Disqus
ENG Subscription
E-Mail Alert
ENG Most popular papers
Publication Ethics & OA Statement
ENG News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.