Decorating and Filling of Multi-Walled Carbon Nanotubes with TiO2 Nanoparticles via Wet Chemical Method
Sedigheh Abbasi, Seyed Mojtaba Zebarjad, Seyed Hossein Noie Baghban
DOI: 10.4236/eng.2013.52030   PDF   HTML   XML   5,927 Downloads   8,927 Views   Citations


Multi-walled carbon nanotubes (MWCNTs) have been successfully modified with TiO2 nanoparticles via wet chemical method. For this purpose tetra chloride titanium (TiCl4) was used as titanium source. MWCNTs were exposed at different amount of TiCl4 (0.25 and 0.1 ml) and different soaking times. The modified MWCNTs have been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM results showed that the MWCNTs were fully decorated with TiO2 at short term immersion. Increasing soaking time caused to fill the MWCNTs with TiO2 nanoparticles. The results showed that the amount of precursor had a significant role on quantity of decoration. The decoration of outer surface of MWCNTs with TiO2 was more noticeable at large amount of TiCl4. XRD results revealed that the crystalline structure of TiO2 on the surface and inner of MWCNTs was rutile. The average size of TiO2 nanoparticles which modified MWCNTs were 20 nm.

Share and Cite:

S. Abbasi, S. Zebarjad and S. Baghban, "Decorating and Filling of Multi-Walled Carbon Nanotubes with TiO2 Nanoparticles via Wet Chemical Method," Engineering, Vol. 5 No. 2, 2013, pp. 207-212. doi: 10.4236/eng.2013.52030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Terrones, “Carbon Nanotubes: Synthesis and Properties, Electronic Devices and Other Emerging Applications,” International Materials Reviews, Vol. 49, No. 6, 2004, pp. 325-377.
[2] C. Li and T. Chou, “Elastic Moduli of Multi-Walled Carbon Nanotubes and the Effect of van der Waals Forces,” Composites Science and Technology, Vol. 63, No. 11, 2003, pp. 1517-1524. doi:10.1016/S0266-3538(03)00072-1
[3] M. S. Dreselhaus, G. Dresselhaus and P. Avouris, “Carbon Nanotubes: Synthesis, Structure, Properties and Applications,” Springer, Berlin, 2001. doi:10.1007/3-540-39947-X
[4] E. T. Thonstenson, Z. Ren and T. W Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Composites Science and Technology, Vol. 61, No. 13, 2001, pp. 1899-1912. doi:10.1016/S0266-3538(01)00094-X
[5] W. A. Curtin and B. W. Sheldon, “Review: Ceramic and Metal Nanocomposites,” Materials Today, Vol. 7, No. 11, 2004, pp. 44-48. doi:10.1016/S1369-7021(04)00508-5
[6] N. Bouazza , M. Ouzzine , M. A. L. denas, D. Eder and A. L. Solano, “TiO2 Nanotubes and CNT-TiO2 Hybrid Materials for the Photocatalytic Oxidation of Propene at Low Concentration,” Applied Catalysis B: Environmental, Vol. 92, No. 3-4, 2009, pp. 377-383. doi:10.1016/j.apcatb.2009.08.017
[7] W. Chun Oh, M. L. Chen and B. K. Chem, “Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide,” Bulletin of the Korean Chemical Society, Vol. 29, No. 1, 2008.
[8] C. S. Kuo, Y. H. Tseng, H. Y. Lin, C. H. Huang, C. Y. Shen, Y. Y. Li, S. I. Shah and C. P. Huang, “Synthesis of a CNT-Grafted TiO(2) Nanocatalyst and Its Activity Triggered by a DC Voltage,” Nanotechnology, Vol. 18, No. 46, 2007, Article ID: 465607. doi:10.1088/0957-4484/18/46/465607
[9] G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding and Z. M. Liu, “SnO2/Carbon Nanotube Nanocomposites Synthesized in Supercritical Fluids: Highly Efficient Materials for Use as a Chemical Sensor and as the Anode of a Lithium-Ion Battery,” Nanotechnology, Vol. 18, No. 43, 2007, Article ID: 435707. doi:10.1088/0957-4484/18/43/435707
[10] X. Y. Wang, B. Y. Xia, X. F. Zhu, J. S. Chen, S. L. Qiu and J. X. Li, “Controlled Modification of Multiwalled Carbon Nanotubes with ZnO Nanostructures,” Solid State Chemistry, Vol. 181, No. 4, 2008, pp. 822-827. doi:10.1016/j.jssc.2008.01.005
[11] J. W. Liu, X. J. Li and L. M. Dai, “Water-Assisted Growth of Aligned Carbon Nanotube-ZnO Heterojunction Arrays,” Advanced Materials, Vol. 18, No. 3, 2006, pp. 1740-1744. doi:10.1002/adma.200502346
[12] X. B. Fan, F. Y. Tan, G. L. Zhang and F. B. Zhang, “A Novel Strategy to Fabricate γ-Fe2O3-MWCNTs Hybrids with Selectively Ferromagnetic or Superparamagnetic Properties,” Materials Science and Engineering A, Vol. 454-455, 2007, pp. 37-42. doi:10.1016/j.msea.2007.01.027
[13] Z. Y. Wang, G. Chen and D. G. Xia, “Coating of Multi-Walled Carbon Nanotube with SnO2 Films of controlled Thickness and Its Application for Li-Ion Battery,” Power Sources, Vol. 184, No. 2, 2008, pp. 432-436. doi:10.1016/j.jpowsour.2008.03.028
[14] K. Hernadi, E. Ljubovic, J. W. Seo and L. Forro, “Synthesis of MWNT-Based Composite Materials with inorganic Coating,” Acta Materialia, Vol. 51, No. 5, 2003, pp. 1447-1452. doi:10.1016/S1359-6454(02)00539-6
[15] M. Tasviri, H. A. R. Pourb, H. Ghourchianb and M. R. Gholami, “Amine Functionalized TiO2 Coated on Carbon Nanotube as a Nanomaterial for Direct Electrochemistry of Glucose Oxidase and Glucose Biosensing,” Molecular Catalysis B: Enzymatic, Vol. 68, No. 2, 2011, pp. 206-210. doi:10.1016/j.molcatb.2010.11.005
[16] L. Chen, B. L. Zhang, M. Z. Qu and Z. L. Yu, “Preparation and Characterization of CNTs-TiO2 Composites,” Powder Technology, Vol. 154, No. 1, 2005, pp. 70-72. doi:10.1016/j.powtec.2005.04.028
[17] C. Y. Kuo, “Prevenient Dye-Degradation Mechanisms Using UV/TiO2/Carbon Nanotubes Process,” Hazardous Mater, Vol. 163, No. 1, 2009, pp. 239-244. doi:10.1016/j.jhazmat.2008.06.083
[18] W. Wang, P. Serp and P. Kalck, “Photocatalytic Degradation of Phenol on MWNT and Titania Composite Catalysts Prepared by a Modified Sol-Gel Method,” Applied Catalysis B: Environmental, Vol. 56, No. 4, 2005, pp. 305-312. doi:10.1016/j.apcatb.2004.09.018
[19] S. Aryal, C. K. Kim and K. W. Kim, “Multi-Walled Carbon Nano-Tubes/TiO2 Composite Nanofiber by Electrospinning,” Materials Science and Engineering: C, Vol. 28, No. 1, 2008, pp. 75-79. doi:10.1016/j.msec.2007.10.002
[20] J. Cho, S. Schaab and J. A. Roether, “Nanostructured Carbon Nanotube/TiO2 Composite Coatings Using Electrophoretic Deposition (EPD),” Journal of Nanoparticle Research, Vol. 10, No. 1, 2008, pp. 99-105. doi:10.1007/s11051-007-9230-x
[21] H. Yu, X. Quan and S. Chen, “Aligned TiO2-Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability,” The Journal of Physical Chemistry C, Vol. 111, No. 35, 2007, pp. 12987-12991.
[22] J. Sun, L. Gao and M. Iwasa, “Noncovalent Attachment of Oxide Nanoparticles onto Carbon Nanotubes Using Water-in-Oil Microemulsions,” Chemical Communications, Vol. 7, 2004, pp. 832-833. doi:10.1039/b400817k
[23] Q. H. Zhang, L. Gao and J. K. Guo, “Preparation and Characterization of Nanosized TiO2 Powders from Aqueous TiCl4 Solution,” Nanostructured Materials, Vol. 11, No. 8, 1999, pp. 1293-1300. doi:10.1016/S0965-9773(99)00421-3
[24] J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Gou and Z. Du, “Effect of chEmical Oxidation on the Structure of Single-Walled Carbon Nanotubes,” The Journal of Physical Chemistry B, Vol. 107, No. 16, 2003, pp. 3712-3718. doi:10.1021/jp027500u
[25] L. Zhao and L. Gao, “Filling of Multi-Walled Carbon Nanotubes with tin(IV) Oxide,” Carbon, Vol. 42, No. 15, 2004, pp. 3251-3272.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.