Low Frequency Ultrasonication Induced Antitumor Effect in 5-Aminolevulinic Acid Treated Malignant Glioma

DOI: 10.4236/jct.2013.41025   PDF   HTML   XML   4,547 Downloads   6,724 Views   Citations


We investigated the feasibility of sonodynamic therapy for glioma by low frequency ultrasoundwith5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX) in heme synthetic process. In vivo tumor model was made by inoculating human glioma cell line U87-MG subcutaneously in nude mice. The tumor was sonicated by 25-kHz ultrasound 4 hours following administration of 5-ALA. The tumor size decreased in 5-ALA administered (ALA(+)US(+)) mice, while increased in non-5-ALA administrated (ALA(-)US(+)) mice and non-sonicated mice (ALA(+)US(-)). The immunohistochemical analysis revealed an apoptotic change in tumor tissue of ALA(+)US(+) mice. The results showed the therapeutic effect of 25 kHz ultrasound for the glioma in 5-ALA administered tumor-bearing mice by inducing apoptotic change of tumor cells. This is a first report to elucidate the feasibility of therapeutic use of 25 kHz, relatively low frequency, ultrasound in sonodynamic therapy using 5-ALA as a sonosensitizer precursor. The utilization of this frequency will contribute to the development of sonodynamic therapy for gliomas and the spread of this technique in many hospitals that possess ultrasonic aspirators.

Share and Cite:

F. Yamaguchi, T. Asakura, H. Takahashi, T. Kitamura and A. Teramoto, "Low Frequency Ultrasonication Induced Antitumor Effect in 5-Aminolevulinic Acid Treated Malignant Glioma," Journal of Cancer Therapy, Vol. 4 No. 1, 2013, pp. 170-175. doi: 10.4236/jct.2013.41025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, “Photodynamic Therapy of Cancer: An Update,” CA: A Cancer Journal for Clinicians, Vol. 61, No. 4, 2011, pp. 250-281. doi:10.3322/caac.20114
[2] Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky and J. M. Nesland, “5-Aminolevulinic Acid-Based Photodynamic Therapy,” Cancer, Vol. 79, No. 12, 1997, pp. 2282-2308. doi:10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O
[3] X. Wang, P. Wang, W. Tong and Q. Liu, “Comparison of Pharmacokinetics, Intracellular Localizations and Sonodynamic Efficacy of Endogenous and Exogenous Protoporphyrin IX in Sarcoma 180 Cells,” Ultrasonics, Vol. 50, No. 8, 2010, pp. 803-810. doi:10.1016/j.ultras.2010.04.004
[4] R. Canaparo, L. Serpe, M. G. Catalano, O. Bosco, G. P. Zara, L. Berta and R. Frairia, “High Energy Shock Waves (HESW) for Sonodynamic Therapy: Effects on HT-29 Human Colon Cancer Cells,” Anticancer Research, Vol. 26, No. 5A, 2006, pp. 3337-3342.
[5] W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen and ALA-Glioma Study Group, “Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial,” Lancet Oncology, Vol. 7, No. 5, 2006, pp. 392-401. doi:10.1016/S1470-2045(06)70665-9
[6] Z. Ji, G. Yang, V. Vasovic, B. Cunderlikova, Z. Suo, J. M. Nesland and Q. Peng, “Subcellular Localization Pattern of Protoporphyrin IX is an Important Determinant for Its Photodynamic Efficiency of Human Carcinoma and Normal Cell Lines,” Journal of Photochemistry and Photobiology B, Vol. 84, No. 3, 2006, pp. 213-220. doi:10.1016/j.jphotobiol.2006.03.006
[7] W. Song, H. Cui, R. Zhang, J. Zheng and W. Cao, “Apoptosis of SAS Cells Induced by Sonodynamic Therapy Using 5-Aminolevulinic Acid Sonosensitizer,” Anticancer Research, Vol. 31, No. 1, 2011, pp. 39-45.
[8] M. Kinoshita and K. Hynynen, “Mechanism of Porphyrin-Induced Sonodynamic Effect: Possible Role of Hyperthermia,” Radiation Research, Vol. 165, No. 3, 2006, pp. 299-306. doi:10.1667/RR3510.1
[9] F. Epstein, “The Cavitron Ultrasonic Aspirator in Tumor Surgery,” Clinical Neurosurgery, Vol. 31, 1983, pp. 497-505.
[10] M. Brock, I. Ingwersen and W. Roggendorf, “Ultrasonic Aspiration in Neurosurgery,” Neurosurgical Review, Vol. 7, No. 2-3, 1984, pp. 173-177. doi:10.1007/BF01780701
[11] G. Beckman, L. Beckman, J. Pontén and B. Westermark, “G-6-PD and PGM Phenotypes of 16 Continuous Human Tumor Cell Lines. Evidence Against Cross-Contamination and Contamination by HeLa Cells,” Human Heredity, Vol. 21, No. 3, 1971, pp. 238-241. doi: 10.1159/000152408
[12] A. E. Worthington, J. Thompson, A. M. Rauth and J. W. Hunt, “Mechanism of Ultrasound Enhanced Porphyrincytotoxity. Part I: A Search for Free Radical Effects,” Ultrasound in Medicine & Biology, Vol. 23, No. 7, 1997, pp. 1095-1105. doi:10.1016/S0301-5629(97)00019-7
[13] N. Yumita and S. Umemura, “Sonodynamic Therapy with Photofrin II on AH130 Solid Tumor. Pharmacokinetics, Tissue Distribution and Sonodynamicantitumoral Efficacy Ofphotofrin II,” Cancer Chemotherapy and Pharmacology, Vol. 51, No. 2, 2003, pp. 174-178. doi:10.1007/s00280-002-0523-6
[14] N. Mi, Q. Liu, X. Wang, X. Zhao, W. Tang, P. Wang and B. Cao, “Induction of Sonodynamic Effect with Protoporphyrin IX on Isolate Hepatoma-22 Cells,” Ultrasound in Medicine & Biology, Vol. 35, No. 4, 2009, pp. 680-686. doi:10.1016/j.ultrasmedbio.2008.07.002
[15] X. B. Wang, Q. H. Liu, P. Wang, W. Tang and Q. Hao, “Study of Cell Killing Effect on S180 by Ultrasound Activating Protoporphyrin IX,” Ultrasonics, Vol. 48, No. 2, 2008, pp. 135-140. doi:10.1016/j.ultras.2007.11.001
[16] Y. Li, P. Wang, P. Zhao, S. Zhu, X. Wang and Q. Liu, “Apoptosis Induced by Sonodynamic Treatment by Protoporphyrin IX on MDA-MB-231 Cells,” Ultrasonics, Vol. 52, No. 4, 2012, pp. 490-496. doi:10.1016/j.ultras.2011.10.013

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.