Rapid Analysis of Morusin from Ramulus mori by HPLC-DAD, Its Distribution in Vivo and Differentiation in the Cultivated Mulberry Species

DOI: 10.4236/fns.2013.42026   PDF   HTML   XML   3,964 Downloads   6,081 Views   Citations

Abstract

The distribution and content differentiation of morusin in the cultivated species of mulberry by HPLC-DAD are described in this paper. The experimental results showed that morusin is present in all parts of the mulberry bush. The content of morusin was highest in root bark and second highest in branch bark. The difference in morusin content of 20 different species of cultivated mulberry branch bark was significant. The level of morusin was highest in the branch bark of cultivated mulberry No. 404, a tetraploid cultivar, and third in the Husang 32 cultivar of Morus multicaulis. The method used in this study for determining morusin content exhibited good repeatability (RSD 6.02%) and recovery (100.62%). Therefore, the results from this study provide reliable data, for research and development in the future, on the level and distribution of morusin in mulberry in general and the differences found between various cultivated mulberries in particular. Furthermore, the HPLC-DAD method to determine morusin content is fast and reliable and is applicable not only to mulberry bushes but also to other plants.

Share and Cite:

B. Ma, F. Cui and Y. Zhang, "Rapid Analysis of Morusin from Ramulus mori by HPLC-DAD, Its Distribution in Vivo and Differentiation in the Cultivated Mulberry Species," Food and Nutrition Sciences, Vol. 4 No. 2, 2013, pp. 189-194. doi: 10.4236/fns.2013.42026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Andallu and N. Ch. Varadacharyulu, “Antioxidant Role of Mulberry (Morus indica L. cv. Anantha) Leaves in Streptozotocin-Diabetic Rats,” Clinica Chimica Acta Vol. 338, No. 1-2, 2003, pp. 3-10. doi:10.1016/S0009-8981(03)00322-X
[2] B. Andallu, B. Radhika and V. Suryakantham, “Effect of Aswagandha, Ginger and Mulberry on Hyperglycemia and Hyperlipidemia,” Plant Foods for Human Nutrition, Vol. 58, No. 3, 2003, pp. 1-7. doi:10.1023/B:QUAL.0000040352.23559.04
[3] K. Murata, K. Yatsunami, E. Fukuda, et al., “Antihyperglycemic Effects of Propolis Mixed with Mulberry Leaf Extract on Patients with Type 2 Diabetes,” Alternative Therapies in Health and Medicine, Vol. 10, No. 3, 2004, pp. 78-79.
[4] C. Y. Lee, S. M. Sim and H. M. Cheng, “Systemic Absorption of Antioxidants from Mulberry (Morus alba L) leaf Extracts Using an in Situ Rat Intestinal Preparation,” Nutrition Research, Vol. 27, No. 8, 2007, pp. 492-497. doi:10.1016/j.nutres.2007.06.004
[5] Q. Du, J. Zheng and Y. Xu, “Composition of Anthocyanins in Mulberry and Their Antioxidant Activity,” Journal of Food Composition and Analysis, Vol. 21, No. 5, 2008, pp. 390-395. doi:10.1016/j.jfca.2008.02.007
[6] Z. G. Yang, K. Matsuzaki, S. Takamatsu and S. Kitanaka, “Inhibitory Effects of Constituents from Morus alba var. Multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells,” Molecules, Vol. 16, No. 7, 2011, pp. 6010-6022. doi:10.3390/molecules16076010
[7] A. N. Singab, H. A. El-Beshbishy, M. Yonekawa, T. Nomura and T. Fukai, “Hypoglycemic Effect of Egyptian Morus alba Root Bark Extract: Effect on Diabetes and Lipid Peroxidation of Streptozotocin-Induced Diabetic Rats,” Journal of Ethnopharmacology, Vol. 100, No. 3, 2005, pp. 333-338. doi:10.1016/j.jep.2005.03.013
[8] S. Yoshizawa, M. Suganuma, H. Fujiki, T. Fukai, T. Nomura and T. Sugimura, “Morusin, Isolated from Root Bark of Moms alba L., Inhibits Tumour Promotion of Teleocidin,” Phytotherapy Research, Vol. 3, No. 5, 1989, pp. 193-195. doi:10.1002/ptr.2650030508
[9] T. Fukai, K. Satoh, T. Nomura and H. Sakagami, “Antinephritis and Radical Scavenging Activity of Prenylflavonoids,” Fitoterapia, Vol. 74, No. 7-8, 2003, pp. 720-724. doi:10.1016/j.fitote.2003.07.004
[10] Y. S. Chi, H. G. Jong, K. H. Son, H. W. Chang, S. S. Kang and H. P. Kim, “Effects of Naturally Occurring Prenylated Flavonoids on Enzymes Metabolizing Arachidonic Acid: Cyclooxygenases and Lipoxygenases,” Biochemical Pharmacology, Vol. 62, No. 9, 2001, pp. 1185-1191. doi:10.1016/S0006-2952(01)00773-0
[11] H. Y. Sohn, K. H. Son, C. S. Kwon, G. S. Kwon and S. S. Kang, “Antimicrobial and Cytotoxic Activity of 18 Prenylated flavonoids Isolated from Medicinal Plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai,” Phytomedicine, Vol. 11, No. 7-8, 2004, pp. 666-672. doi:10.1016/j.phymed.2003.09.005
[12] V. Kuete, D. C. Fozing, W. F. G. D. Kapche, et al., “Antimicrobial Activity of the Methanolic Extract and Compounds from Morus mesozygia Stem Bark,” Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 551-555. doi:10.1016/j.jep.2009.05.004
[13] T. Fukai, K. Satoh, T. Nomura and H. Sakagami, “Antinephritis and Radical Scavenging Activity of Prenylflavonoids,” Fitoterapia, Vol. 74, No. 7-8, 2003, pp. 720-724. doi:10.1016/j.fitote.2003.07.004
[14] N. T. Dat, P. T. X. Binh, L. T. P. Quynh, C. V. Minh, H. T. Huong and J. J. Lee, “Cytotoxic Prenylated Flavonoids from Morus alba,” Fitoterapia, Vol. 81, No. 8, 2010, pp. 1224-1227. doi:10.1016/j.fitote.2010.08.006
[15] J. C. Lee, S. J. Won, C. L. Chao, et al., “Morusin Induces Apoptosis and Suppresses NF-κB Activity in Human Colorectal Cancer HT-29 Cells,” Biochemical and Biophysical Research Communications, Vol. 372, No. 1, 2008, pp. 236-242. doi:10.1016/j.bbrc.2008.05.023
[16] H. H. Ko, S. M. Yu, F. N. Ko, C. M. Teng and C. N. Lin, “Bioactive Constituents of Morus australis and Broussonetia papyrifera,” Journal of Natural Products, Vol. 60, No. 10, 1997, pp. 1008-1011. doi:10.1021/np970186o
[17] S. D. Luo, J. Nemec and B. M. Ning, “Anti-HIV Flavonoids from Morus alba,” Acta Botanica Yunnanica, Vol. 17, No. 1, 1995, pp. 89-95.
[18] J. K. Cho, Y. B. Ryu, M. J. Curtis-Long, et al., “Inhibition and Structural Reliability of Prenylated Fiavones from the Stem Bark of Morus Lhou on β-Secretase (BACE-1),” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 10, 2011, pp. 2945-2948. doi:10.1016/j.bmcl.2011.03.060
[19] G. Ni, Q. J. Zhang, Y. H. Wang, R. Y. Chen, Z. F. Zheng and D. Q. Yu, “Chemical Constituents of the Stem Bark of Morus cathayana,” Journal of Asian Natural Products Research, Vol. 12, No. 6, 2010, pp. 505-515. doi:10.1080/10286020.2010.489817
[20] S. C. Sun, R. Y. Chen and D. Q. Yu, “Structures of Two New Benzofuran Derivatives from the Bark of Mulberry Tree (Morus macroura Miq.),” Journal of Asian Natural Products Research, Vol. 3, No. 4, 2001, pp. 253-259. doi:10.1080/10286020108040364
[21] L. W. Chang, L. J. Juang, B. S. Wang, et al., “Antioxidant and Antityrosinase Activity of Mulberry (Morus alba L.) Twigs and Root Bark,” Food and Chemical Toxicology, Vol. 49, No. 4, 2011, pp. 785-790. doi:10.1016/j.fct.2010.11.045
[22] M. C. Pascual-Marti, A. Salvador, A. Chafer and A. Berna, “Supercritical Fluid Extraction of Resveratrol from Grape Skin of Vitis inifera and Determination by HPLC,” Talanta, Vol. 54, No. 4, 2001, pp. 735-740. doi:10.1016/S0039-9140(01)00319-8

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.