The molecular regulatory effect of intracerebroventricular thymulin on endotoxin-mediated NF-kB nuclear translocation and activation in vivo


The nuclear factor-kB (NF-kB) is one member of a ubiquitously expressed family of Rel-related transcription factors that serve as critical regulators of proinflammatory genes. The immunomodulatory potential of thymulin and its effect on NF-kB in vivo, particularly in the central nervous system (CNS), is not well characterized. In this study, the role of endotoxin (ET) in regulating NF-kB was unraveled in various compartments of the CNS. Stereotaxic localization reverberated specific intracerebroventricular (ICV) injection of ET into the CNS, with or without pretreatment with ICV thymulin. Treatment with ET upregulated the expression and nuclear trans-localization of NF-kB1 (p50), NF-kB2 (p52), RelA (p65), RelB (p68) and c-Rel (p75) in the hippocampus (HC), an effect abrogated by ICV pretreatment with thymulin. Thymulin modulated the phosphorylation of IkB-a in the HC by upregulating the cytosolic accumulation of IkB-a and downregulating its phosphorylation (pIkB-a). Further analysis of the DNA-binding activity revealed an upregulated activity in the HC relative to saline-constitutive expression of the RelA (p65) subunit. ET did not induce the DNA-binding activity of NF-kB in the diencephalon (DE) or substantia nigra (SN) at various time points, when compared with baseline levels of expression. Intraperitoneal (IP) injections of ET in vivo upregulated the expression of NF-kB subunits in the liver and reduced the cytosolic accumulation of IkB-a by inducing pIkB-a. Furthermore, IP pretreatment with thymulin followed by ICV inje

Share and Cite:

Haddad, J. (2013) The molecular regulatory effect of intracerebroventricular thymulin on endotoxin-mediated NF-kB nuclear translocation and activation in vivo. American Journal of Molecular Biology, 3, 45-48. doi: 10.4236/ajmb.2013.31006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Haddad, J.J. (2008) The regulation of neuroimmune-endocrine interactions: Mechanisms, molecular pathways unraveled and the pivotal role of cytokines—A unsung putative bidirectional interdependence between the immune and neuroendocrine interfaces. Current Immunology Reviews, 4, 134-158. doi:10.2174/157339508785160723
[2] Welsh, C.J., Steelman, A.J., Mi, W., Young, C.R., Storts, R., Welshm Jr., T.H. and Meagher, M.W. (2009) Neuroimmune interactions in a model of multiple sclerosis. Annals of the New York Academy of Science, 1153, 209-219. doi:10.1111/j.1749-6632.2008.03984.x
[3] Haddad, J.J., Saadé, N.E. and Safieh-Garabedian, B. (2002) Cytokines and neuro-immune-endocrine interactions: A role for the hypothalamic-pituitary-adrenal revolving axis. Journal of Neuroimmunology, 133, 1-19. doi:10.1016/S0165-5728(02)00357-0
[4] Bach, J., Bardenne, M., Pleau, J. and Rosa, J. (1977) Biochemical characterization of a serum thymic factor. Nature, 266, 55-57. doi:10.1038/266055a0
[5] Millington, G. and Buckingham, J.C. (1992) Thymic peptides and neuroendocrine-immune communication. Journal of Endocrinology, 133, 163-168. doi:10.1677/joe.0.1330163
[6] Dardenne, M. (1999) Role of thymic peptides as transmitters between the neuroendocrine and immune systems. Annals of Medicine, 2, 34-39.
[7] Dardenne, M., Pleau, J.M. and Bach, J.F. (1980) Evidence of the presence in normal serum of a carrier of the serum thymic factor (FTS). Journal of Immunology, 17, 83-94.
[8] Dardenne, M., Pleau, J.M., Savino, W., Prasad, A.S. and Bach, J.F. (1993) Biochemical and biological aspects of the interaction between thymulin and zinc. Progress in Clinical and Biological Research, 380, 23-32.
[9] Prasad, A.S. (2008) Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Experimental Gerontology, 43, 370-377. doi:10.1016/j.exger.2007.10.013
[10] Prasad, A.S. (2007) Zinc: Mechanisms of host defense. Journal of Nutrition, 137, 1345-1349.
[11] Safieh-Garabedian, B., Ahmed, K., Khamashta, M.A., Taub, N.A. and Hughes, G.R. (1993) Thymulin modulates cytokine release by peripheral blood mononuclear cells: A comparison between healthy volunteers and patients with systemic lupus erythematosus. International Archives of Allergy and Immunology, 101, 126-131. doi:10.1159/000236509
[12] Safieh-Garabedian, B., Jalakhian, R.H., Saadé, N.E., Haddad, J.J., Jabbur, S.J. and Kanaan, S.A. (1996) Thymulin reduces hyperalgesia induced by peripheral endotoxin injection in rats and mice. Brain Research, 717, 179-183. doi:10.1016/0006-8993(95)01532-9
[13] Safieh-Garabedian, B., Ochoa-Chaar, C.I., Poole, S., Massaad, C.A., Atweh, S.F., Jabbur, S.J. and Saadé, N.E. (2003) Thymulin reverses inflammatory hyperalgesia and modulates the increased concentration of proinflammatory cytokines induced by i.c.v. endotoxin injection. Neuroscience, 121, 865-873. doi:10.1016/S0306-4522(03)00500-1
[14] Haddad, J.J., Land, S.C., Saadé, N.E. and Safieh-Garabedian, B. (2000) Immunomodulatory potential of thymulin-Zn2+ in the alveolar epithelium: Amelioration of endotoxin-induced cytokine release and partial amplification of a cytoprotective IL-10-sensitive pathway. Biochemical and Biophysical Research Communication, 274, 500-505. doi:10.1006/bbrc.2000.3155
[15] Saadé, N.E., Atweh, S.F., Jabbur, S.J., Dardenne, M., Bach, J.F. and Safieh-Garabedian, B. (2003) A thymulin analogue peptide with powerful inhibitory effects on pain of neurogenic origin. Neuroscience, 119, 155-165. doi:10.1016/S0306-4522(03)00072-1
[16] Hadley, A.J., Rantle, C.M. and Buckingham, J.C. (1997) Thymulin stimulates corticotrophin release and cyclic nucleotide formation in the rat anterior pituitary gland. Neuroimmunomodulation, 4, 62-69.
[17] Safieh-Garabedian, B., Poole, S., Haddad, J.J., Massaad, C.A., Jabbur, S.J. and Saadé, N.E. (2002) The role of the sympathetic efferents in endotoxin-induced localized inflammatory hyperalgesia and cytokine upregulation. Neuropharmacology, 42, 864-872. doi:10.1016/S0028-3908(02)00028-X
[18] Dardenne, M., Saadé, N. and Safieh-Garabedian, B. (2006) Role of thymulin or its analogue as a new analgesic molecule. Annals of the New York Academy of Science, 1088, 153-163. doi:10.1196/annals.1366.006
[19] Safieh-Garabedian, B., Dardenne, M., Pléau, J.M. and Saadé, N.E. (2002) Potent analgesic and anti-inflammatory actions of a novel thymulin-related peptide in the rat. British Journal of Pharmacology, 136, 947-955. doi:10.1038/sj.bjp.0704793
[20] Reggiani, P.C., Morel, G.R., Cónsole, G.M., Barbeito, C.G., Rodriguez, S.S., Brown, O.A., Bellini, M.J., Pléau, J.M., Dardenne, M. and Goya, R.G. (2009) The thymus-neuroendocrine axis: Physiology, molecular biology, and therapeutic potential of the thymic peptide thymulin. Annals of the New York Academy of Science, 1153, 98-106. doi:10.1111/j.1749-6632.2008.03964.x
[21] Mutchnick, M.G., Good, A.E., Barlas, N. and Trainin, N. (1982) Thymic humoral factor effect on intracellular lymphocyte cAMP in patients with ankylosing spondylitis. Journal of Rheumatology, 9, 627-629.
[22] Brown, O.A., Sosa, Y.E., Dardenne, M., Pléau, J.M. and Goya, R.G. (2000) Studies on the gonadotropin-releasing activity of thymulin: Changes with age. Journal of Gerontology, 55, B170-B176. doi:10.1093/gerona/55.4.B170
[23] Rinaldi-Garaci, C., Jezzi, T., Baldassarre, A.M., Dardenne, M., Bach, J.F. and Garaci, E. (1985) Effect of thymulin on intracellular cyclic nucleotides and prostaglandins E2 in peanut agglutinin-fractionated thymocytes. European Journal of Immunology, 15, 548-552. doi:10.1002/eji.1830150604
[24] Haddad, J.J. and Land, S.C. (2000) O2-evoked regulation of HIF-1a and NF-kB in perinatal lung epithelium requires glutathione biosynthesis. American Journal of Physiology Lung Cellular and Molecular Physiology, 278, L492-L503.
[25] Haddad, J.J., Olver, R.E. and Land, S.C. (2000) Antioxidant/pro-oxidant equilibrium regulates HIF-1a and NF-kB redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. Journal of Biological Chemistry, 275, 21130-21139. doi:10.1074/jbc.M000737200
[26] Yang, J.P., Merin, J.P., Nakano, T., Kato, T., Kitade, Y. and Okamoto, T. (1995) Inhibition of the DNA-binding activity of NF-kB by gold compounds in vitro. FEBS Letters, 361, 89-96. doi:10.1016/0014-5793(95)00157-5
[27] Kanaan, S.A., Saadé, N.E., Haddad, J.J., Abdelnoor, A.M., Atweh, S.F., Jabbur, S.J. and Safieh-Garabedian, B. (1996) Endotoxin-induced local inflammation and hyperalgesia in rats and mice: A new model for inflammatory pain. Pain, 66, 373-379. doi:10.1016/0304-3959(96)03068-0
[28] Senftleben, U., Li, Z.W., Baud, V. and Karin, M. (2001) IKKb is essential for protecting T cells from TNFa-induced apoptosis. Immunity, 14, 217-230. doi:10.1016/S1074-7613(01)00104-2
[29] Brown, O.A., Sosa, Y.E., Dardenne, M., Pléau, J. and Goya, R.G. (1999) Growth hormone-releasing activity of thymulin on pituitary somatotropes is age dependent. Neuroendocrinology, 69, 20-27. doi:10.1159/000054399
[30] Wall, E.A., Zavzavadjian, J.R., Chang, M.S., Randhawa, B., Zhu, X., Hsueh, R.C., Liu, J., Driver, A., Bao, X.R., Sternweis, P.C., Simon, M.I. and Fraser, I.D. (2009) Suppression of LPS-induced TNF-a production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Science Signaling, 2, ra28. doi:10.1126/scisignal.2000202
[31] Qi, X.F., Kim, D.H., Yoon, Y.S., Li, J.H., Song, S.B., Jin, D., Huang, X.Z., Teng, Y.C. and Lee, K.J. (2009) The adenylyl cyclase-cAMP system suppresses TARC/CCL17 and MDC/CCL22 production through p38 MAPK and NF-kB in HaCaT keratinocytes. Molecular Immunology, 46, 1925-1934. doi:10.1016/j.molimm.2009.03.018
[32] Henriques-Coelho, T., Oliveira, S.M., Moura, R.S., Roncon-Albuquerque Jr., R., Neves, A.L., Santos, M., Nogueira-Silva, C., La Fuente Carvalho, F., Brand?o-Nogueira, A., Correia-Pinto, J. andLeite-Moreira, A.F. (2008) Thymulin inhibits monocrotaline-induced pulmonary hypertension modulating interleukin-6 expression and suppressing p38 pathway. Endocrinology, 149, 4367-4373. doi:10.1210/en.2008-0018
[33] Yasuda, J., Nishioka, W., Sakudo, A., Yama, S., Setoguchi, R., Saeki, K., Matsumoto, Y., Awaya, A. and Onodera, T. (2003) Suppressor mechanism of serum thymic factor on tumor necrosis factor-a-induced apoptosis in the mouse pancreatic beta-cell line. Biochemical and Biophysical Research Communication, 311, 501-505. doi:10.1016/j.bbrc.2003.10.025
[34] Haddad, J.J. and Abdel-Karim, N.E. (2011) NF-kB cellular and molecular regulatory mechanisms and pathways: Therapeutic pattern or pseudoregulation? Cellular Immunology, 271, 5-14. doi:10.1016/j.cellimm.2011.06.021

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.