Polycomb response element-binding sites in the MDR of CLL: Potential tumor suppressor regulation


Chronic lymphocytic leukemia [CLL] is the most common adult leukemia and is heterogeneous in clinical presentation. CLL cases present with various chromosomal aberrations, including 11q23, 14q32, 17p, and trisomy 12, with the most common abnormality being deletion of 13q14 [1]. Although monoallelic deletion of 13q14 is common, there is a subset of patients who have complete nullisomy at 13q14, a locus that has been hypothesized to contribute to CLL pa thogenesis [2] due to loss of tumor suppressors [DLEU and miR-15a/16-1]. We hypothesized that deletion of both copies of 13q14 would lead to uncontrollable proliferation of CLL cells and a poor prognosis. We examined our 13q14 nullisomy for survival, treatment-free survival, lymphocyte doubling time, and the presence of lymphadenopathy. Furthermore, we compared the gene expression profiles between patients with 13q14 monosomy, nullisomy, or normal karyotype. Our results suggest that patients with 13q nullisomy have a higher incidence of bulky lymphadenopathy [16.6% compared to 10% of monosomy patients], a higher frequency of lymphocyte doubling time [27.7% compared to 7.4% of monosomy patients], and a higher rate of needing treatment [50% compared to 18.5% of monosomy patients]. We observed deletion of DLEU1 and HTR2A, consistent with a gene dosage effect, and observed PRE-binding sites on DLEU1. Patients with homozygous deletion of 13q14 had a worse prognosis compared to heterozygotes. Lastly, the DLEU1 locus is a possible “second hit” loss for CLL progression.

Share and Cite:

(2013) Polycomb response element-binding sites in the MDR of CLL: Potential tumor suppressor regulation. Advances in Bioscience and Biotechnology, 4, 129-135. doi: 10.4236/abb.2013.41A019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mraz, M., Pospisilova, S., Malinova, K., Slapak, I. and Mayer, J. (2009) MicroRNAs in chronic lymphocytic leu kemia pathogenesis and disease subtypes. Leukemia & Lymphoma, 50, 506-509. doi:10.1080/10428190902763517
[2] Kasar, S., Salerno, E., Yuan, Y., et al. (2012) Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignan cy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes and Immunity, 13, 109-119. doi:10.1038/gene.2011.58
[3] Lerner, M., Harada, M., Loven, J., et al. (2009) DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR 15a and miR-16-1. Experimental Cell Research, 315, 2941-2952. doi:10.1016/j.yexcr.2009.07.001
[4] Klein, U., Lia, M., Crespo, M., et al. (2010) The DLEU2/ miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28-40. doi:10.1016/j.ccr.2009.11.019
[5] Palamarchuk, A., Efanov, A., Nazaryan, N., et al. (2010) 13q14 deletions in CLL involve cooperating tumor suppressors. Blood, 115, 3916-3922. doi:10.1182/blood-2009-10-249367
[6] Van Dyke, D.L., Shanafelt, T.D., Call, T.G., Zent, C.S., Smoley, S.A., Rabe, K.G., Schwager, S.M., Sonbert, J.C., Slager, S.L. and Kay, N.E. (2010) A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukemia. British Journal of Haematology, 148, 544-550.
[7] Dickinson, J.D., Joshi, A.D., Iqbal, J., Sanger, W., Bier man, P.J. and Joshi, S.S. (2006) Genomic abnormalities in chronic lymphocytic leukemia influencing gene expression by a gene dosing effect. International Journal of Molecular Medicine, 17, 769-778.
[8] Joshi, A.D., Hegde, G.V., Dickinson, J.D., et al. (2007) ATM, CTLA4, MNDA, and HEM1 in high versus low CD38 expressing B-cell chronic lymphocytic leukemia. Clinical Cancer Research, 13, 5295-5304. doi:10.1158/1078-0432.CCR-07-0283
[9] Gilling, C.E., Mittal, A.K., Chaturvedi, N.K., et al. (2012) Lymph node-induced immune tolerance in chronic lymphocytic leukemia: A role for caveolin-1. British Journal of Haematology, 158, 216-231. doi:10.1111/j.1365-2141.2012.09148.x
[10] Mittal, A.K., Iqbal, J., Nordgren, T.M., et al. (2008) Mo lecular basis of proliferation/survival and migration of CLL in peripheral blood, bone marrow, and lymph nodes. Blood ASH Annual Meeting, 112, 546.
[11] Mittal, A.K., Gilling, C.E., Iqbal, J., et al. (2009) Clinical heterogeneity of CLL: Role for immune dysregulation mediated by the lymph node microenvironment. Blood ASH Annual Meeting, 114, 1243.
[12] Gilling, C.E., Mittal, A.K., Nganga, V., Palmer, V.L., Wei senburger, D.D., Bierman, P.J., Bociek, R.G., Swanson, P.C. and Joshi, S.S. (2010) Molecular determinants of lymph node microenvironment induced host immune tol erance in CLL: Role for CAV1, PTPN6, and PKCβ in the process. Blood ASH Annual Meeting, 116, 1367.
[13] Fang, Z., Xiong, Y., Li, J., Zhang, W., Zhang, C. and Wan, J. (2012) APC gene deletions in gastic adenocarci nomas in a Chinese population: A correlation with tumor progression. Clinical and Translational Oncology, 14, 60 65. doi:10.1007/s12094-012-0762-x
[14] Valvezan, A.J., Zhang, F., Diehl, J.A. and Klein, P.S. (2012) Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. The Journal of Biological Chemistry, 287, 3823-3832. doi:10.1074/jbc.M111.323337
[15] Bommireddy, R. and Doetschman, T. (2007) TGFbeta1 and Treg cells: Alliance for tolerance. Trends in Molecular Medicine, 13, 492-501. doi:10.1016/j.molmed.2007.08.005
[16] Fogel-Petrovic, M., Long, J.A., Misso, N.L., Foster, P.S., Bhoola, K.D. and Thompson, P.J. (2007) Physiological concentrations of transforming growth factor beta1 selectively inhibit human dendritic cell function. International Immunopharmacology, 20, 1924-1933. doi:10.1016/j.intimp.2007.07.003
[17] Diaz-Valdes, N., Basagoiti, M., Dotor, J., et al. (2011) Induction of monocyte chemoattractant protein-1 and in terleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression. Cancer Research, 71, 812-821. doi:10.1158/0008-5472.CAN-10-2698
[18] Bobr, A., Igyarto, B.Z., Haley, K.M., Li, M.O., Flavell, R.A. and Kaplan, D.H. (2012) Autocrine/paracrine TGF β1 inhibits langerhans cell migration. Proceedings of the National Academy of Sciences of the USA, 109, 10492 10497. doi:10.1073/pnas.1119178109
[19] Luo, H., Zhang, Y., Zhang, Z. and Jin, Y. (2012) The protection of MSCs from apoptosis in nerve regeneration by TGFβ1 through reducing inflammation and promoting VEGF-dependent angiogenesis. Biomaterials, 33, 4277 4287. doi:10.1016/j.biomaterials.2012.02.042
[20] Miron, R.J., Saulacic, N., Buser, D., Iizuka, T. and Sculean, A. (2012) Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFβ1. Clinical Oral Investigations. doi:10.1007/s00784-012-0764-7
[21] Liu, Y., Corcoran, M., Rasool, O., et al. (1997) Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chro nic lymphocytic leukemia. Oncogene, 15, 2463-2473. doi:10.1038/sj.onc.1201643
[22] Migliazza, A., Bosch, F., Komatsu, H., et al. (2001) Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood, 97, 2098-2104. doi:10.1182/blood.V97.7.2098
[23] Wolf, S., Mertens, D., Schaffner, C., et al. (2001) B-cell neoplasia associated gene with multiple splicing (BCMS): The candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions. Human Molecular Ge netics, 10, 1275-1285. doi:10.1093/hmg/10.12.1275
[24] Rondeau, G., Moreau, I., Bezieau, S., et al. (2001) Comprehensive analysis of a large genomic sequence at the putative B-cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus. Mutation Research/Mutation Research Genomics, 458, 55-70. doi:10.1016/S0027-5107(01)00219-6
[25] Rowntree, C., Duke, V., Panayiotidis, P., et al. (2012) Deletion analysis of chromosome 13q14.3 and characterization of an alternative splice form of LEU1 in B cell chronic lymphocytic leukemia. Leukemia, 16, 1267-1275. doi:10.1038/sj.leu.2402551
[26] Cabianca, D.S., Casa, V., Bodega, B., et al. (2012) A long ncRNA linkes copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 149, 819-831. doi:10.1016/j.cell.2012.03.035
[27] Ringrose, L. and Paro, R. (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annual Review of Genetics, 38, 413-443. doi:10.1146/annurev.genet.38.072902.091907
[28] Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. and Cavalli, G. (2007) Genome regulation by polycomb and trithorax proteins. Cell, 128, 735-745. doi:10.1016/j.cell.2007.02.009
[29] Simon, J.A. and Kingston, R.E. (2009) Mechanisms of polycomb gene silencing: Knowns and unknowns. Nature Reviews Molecular Cell Biology, 10, 697-708.
[30] Garg, R., Wierda, W., Ferrajoli, A., Abruzzo, L., Pierce, S., Lerner, S., Keating, M. and O’Brien, S. (2012) The prognostic difference of monoallelic versus biallelic deletion of 13q in chronic lymphocytic leukemia. Cancer, 118, 3531-3537. doi:10.1002/cncr.26593
[31] Lia, M., Carette, A., Tang, H., et al. (2012) Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood, 119, 2981 2990. doi:10.1182/blood-2011-09-381814

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.