Food Conditioning Affects Expression of Insect Resistance in Diploid Willows (Salix spp.)

Abstract

The high energy quota and versatility of use make willows (Salix spp.) attractive as bioenergy crops. Insect defoliation constitutes a threat to the profitability of willow growers. Hitherto, the breeding for resistance against the main insect pests has been hampered by the fact that all known resistant willow clones are polyploids, and existing molecular breeding tools work most effectively for diploids. Here, we firstly report diploid willows highly resistant to the main insect defoliator, the leaf beetle (Phratora vulgatissima), offering new opportunities for breeding resistance. Leaf beetles exposed to three resistant clones (two S. purpurea one S. eriocephala) laid three to 27 times fewer eggs than females on a susceptible S. viminalis clone. Secondly, we show that beetles laid significantly more eggs on resistant clones if they were fed the susceptible clone prior to the oviposition monitoring test compared to when they prefed on resistant clones. Nevertheless, the differences observed between resistant and susceptible clones were pronounced in all cases. The food conditioning effect means that small differences in resistance among clones may be undetected.

Share and Cite:

C. Björkman, K. Eklund, A. Lehrman and J. Stenberg, "Food Conditioning Affects Expression of Insect Resistance in Diploid Willows (Salix spp.)," American Journal of Plant Sciences, Vol. 4 No. 1, 2013, pp. 48-52. doi: 10.4236/ajps.2013.41008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. P. Van Vuuren, E. Stehfest, M. G. J. den Elzen, T. Kram, J. van Vliet, S. Deetman, M. Isaac, K. Klein Goldewijk, A. Hof, A. Mendoza Beltran, R. Oostenrijk and B. van Ruijven, “RCP2.6: Exploring the Possibility to Keep Global Mean Temperature Increase below 2?C,” Climatic Change, Vol. 109, No. 1-2, 2011, pp. 95-116. doi:10.1007/s10584-011-0152-3
[2] I. Dimitriou, H. Rosenqvist and G. Berndes, “Slow Expansion and Low Yields of Willow Short Rotation Coppice in Sweden; Implications for Future Strategies,” Biomass & Bioenergy, Vol. 35, No. 11, 2011, pp. 4613-4618. doi:10.1016/j.biombioe.2011.09.006
[3] A. Karp and I. Shield, “Bioenergy from Plants and the Sustainable Yield Challenge,” New Phytologist, Vol. 179, No. 1, 2008, pp. 15-32. doi:10.1111/j.1469-8137.2008.02432.x
[4] P. Aronsson, T. Dahlin and I. Dimitriou, “Treatment of Landfill Leachate by Irrigation of Willow Coppice—Plant Response and Treatment Efficiency,” Environmental Pollution, Vol. 158, No. 3, 2010, pp. 795-804. doi:10.1016/j.envpol.2009.10.003
[5] M. Mleczek, P. Rutkowski, I. Rissmann, Z. Kaczmarek, P. Golinski, K. Szentner and A. Stachowiak, “Biomass Productivity and Phytoremidiation Potential of Salix alba and Salix viminalis,” Biomass & Bioenergy, Vol. 34, No. 9, 2010, pp. 1410-1418. doi:10.1016/j.biombioe.2010.04.012
[6] M. T. Kelly and J. P. Curry, “The Influence of Phenolic Compounds on the Suitability of three Salix Species as Hosts for the Willow Beetle Phratora vulgatissima,” Entomologia Experimentalis et Applicata, Vol. 61, No. 1, 1991, pp. 25-32. doi:10.1111/j.1570-7458.1991.tb02392.x
[7] C. Bjorkman, S. H?glund, K. Eklund and S. Larsson, “Effects of Leaf Beetle Damage on Stem Wood Production in Coppicing Willow,” Agriculture and Forest Entomology, Vol. 2, No. 2, 2000, pp. 131-139. doi:10.1046/j.1461-9563.2000.00058.x
[8] C. Bjorkman, R. Bommarco, K. Eklund and S. H?glund, “Harvesting Disrupts Biological Control of Herbivores in a short-Rotation Coppice System,” Ecological Applications, Vol. 14, No. 6, 2004, pp. 1624-1633. doi:10.1890/03-5341
[9] P. Dalin, T. Demoly, M. F. Kabir and C. Bj?rkman, “Global Land-Use Change and the Importance of Zoophytophagous Bugs in Biological Control: Coppicing Willows as a Timely Example,” Biological Control, Vol. 59, No. 1, 2011, pp. 6-12. doi:10.1016/j.biocontrol.2011.01.010
[10] M. Stolarski, S. Szczukowski, J. Tworkowski and A, Klasa, “Productivity of Seven Clones of Willow Coppice in Annual and Quadrennial Cutting Cycles,” Biomass and Bioenergy, Vol. 32, No. 12, 2008, pp. 1227-1234. doi:10.1016/j.biombioe.2008.02.023
[11] D. A. Kendall, T. Hunter, G. M. Arnold, J. Liggitt, T. Morris and C. W. Wiltshire, “Susceptibility of Willow Clones (Salix spp.) to Herbivory by Phyllodecta vulgatessima (L.) and Galerucella lineola (Fab.) (Coleoptera, Chrysomelidae),” Annals of Applied Biolology, Vol. 129, No. 3, 1996, pp. 379-390. doi:10.1111/j.1744-7348.1996.tb05762.x
[12] A. Lehrman, M. Torp, J. A. Stenberg, R. Julkunen-Tiitto and C. Bj?rkman, “Estimating Direct Resistance in Willows against a Major Insect Pest (Phratora vulgatissima) Comparing Life History Traits,” Entomologia Experimentalis et Applicata, Vol. 144, No. 1, 2012, pp. 93-100. doi:10.1111/j.1570-7458.2012.01244.x
[13] C. Glynn, A. C. Ronnberg-Wastljung, R. Julkunen-Tiitto and M. Weih, ”Willow Genotype, but Not Drought Treatment, Affects Foliar Phenolic Concentrations and Leaf-Beetle Resistance,” Entomologia Experimentalis et Applicata, Vol. 113, No. 1, 2004, pp. 1-14. doi:10.1111/j.0013-8703.2004.00199.x
[14] A. C. Ronnberg-Wastljung, I. ?hman, C. Glynn and O. Widenfalk, “Quantitative Trait Loci for Resistance to Herbivores in Willow: Field Experiments with Varying Soils and Climates,” Entomologia Experimaentalis et Applicata, Vol. 118, No. 2, 2006, pp. 163-174. doi:10.1111/j.1570-7458.2006.00371.x
[15] S. Larsson, C. Bjorkman and R. Gref, “Responses of Neodiprion sertifer (Hym., Diprionidae) Larvae to Variation in Needle Resin Acid Concentration in Scots pine,” Oecologia, Vol. 70, No. 1, 1986, pp. 77-84. doi:10.1007/BF00377113
[16] J. I. Glendinning, S. Domdom and E. Long, “Selective Adaptation to Noxious Foods by a Herbivorous Insect,” Journal of Experimental Biology, Vol. 204, Pt. 19, 2001, pp. 3355-3367.
[17] D. R. Coyle, K. E. Clark, K. F. Raffa and S. N. Johnson, “Prior Host Feeding Experience Influences Ovipositional but Not Feeding Preference in a Polyphagous Insect Herbivore,” Entomologia Experimentalis et Applicata, Vol. 138, No. 2, 2011, pp. 137-145. doi:10.1111/j.1570-7458.2010.01083.x
[18] M. Rowell-Rahier, “The Food Plant Preference of Phratora vitellinae (Coleoptera, Chrysomelinae). B. A Laboratory Comparison of Geographically Isolated Populations and Experiments on Conditioning,” Oecologia, Vol. 64, No. 3, 1984, pp. 375-380. doi:10.1007/BF00379136
[19] J. Tahvanainen, R. Julkunen-Tiitto and J. Kettunen, “Phenolic Glycosides Govern the Food Selection Pattern of Willow Feeding Leaf Beetles,” Oecologia, Vol. 67, No. 1, 1985, pp. 52-66. doi:10.1007/BF00378451
[20] M. Torp, A. Lehrman, J. Stenberg, R. Julkunen-Tiitto and C. Bj?rkman, “Performance of an Herbivorous Leaf Beetle (Phratora vulgatissima) on Salix F2 Hybrids: The Importance of Phenolics,” Journal of Chemical Ecology (Accepted).
[21] J. A. Stenberg, A. Lehrman and C. Bj?rkman, “Uncoupling Direct and Indirect Plant Defences: Novel Opportunities for Improving Crop Security in Willow Plantations,” Agrculture, Ecosystems & Environment, Vol. 139, No. 4, 2010, pp. 528-533. doi:10.1016/j.agee.2010.09.013
[22] J. A. Stenberg,, A. Lehr-man and C. Bj?rkman, “Host- Plant Genotype Mediates Supply and Demand of Animal Food in an Omnivorous Insect,” Ecological Entomology, Vol. 36, No. 4, 2011, pp. 442-449. doi:10.1111/j.1365-2311.2011.01285.x
[23] J. A. Stenberg, A. Lehrman and C. Bjorkman, “Plant Defence: Feeding Your Bodyguards Can Be Counter-Productive,” Basic and Applied Ecology, Vol. 12, No. 7, 2011, pp. 629-633. doi:10.1016/j.baae.2011.08.007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.