Successful Treatment of Life-Threatening Cerebral Bleeding Associated with Disseminated Intravascular Coagulation Using Recombinant Human Soluble Thrombomodulin in a Patient with Mixed Phenotype Acute Leukemia with t (9; 22) (q34; q11.2); Bcr-Abl1

Abstract

Recently, mixed phenotype acute leukemia (MPAL) with t (9; 22) (q34; q11.2); bcr-abl1 was described as one kind of acute leukemia of ambiguous lineage in the 2008 World Health Organization Classification of Tumors of Hematopoietic and Lymphoid Tissues. However, treatment strategy remains difficult for this uncommon MPAL. In addition, this type of MPAL is at high risk of tumor lysis syndrome (TLS) because of high chemo-sensitivity. Here, we report a MPAL with t (9; 22) (q34; q11.2); bcr-abl1 case that suffered from life-threatening cerebral bleeding associated with disseminated intravascular coagulation (DIC) with TLS after bcr-abl positive acute lymphoblastic leukemia (ALL) type induction therapy who was successfully treated with recombinant human thrombomodulin (rhTM). This case reached complete remission without additive cerebral bleeding. In conclusion, bcr-abl positive ALL type induction therapy was effective for MPAL with t (9; 22) (q34; q11.2); bcr-abl1 and rhTM was effective against DIC with TLS.

Share and Cite:

N. Takezako, T. Ishii, A. Nagata, N. Sekiguchi, S. Noto and A. Miwa, "Successful Treatment of Life-Threatening Cerebral Bleeding Associated with Disseminated Intravascular Coagulation Using Recombinant Human Soluble Thrombomodulin in a Patient with Mixed Phenotype Acute Leukemia with t (9; 22) (q34; q11.2); Bcr-Abl1," International Journal of Clinical Medicine, Vol. 4 No. 1, 2013, pp. 52-57. doi: 10.4236/ijcm.2013.41011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. H. Swerdlow, E. Campo, N. L. Harris, et al., “Acute Leukemias of Ambiguous Lineage,” In: S. H. Swerdlow, E. Campo, N. L. Harris, et al., Eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, IARC Press, Lyon, 2008, pp. 150-155.
[2] Y. Wang, M. Gu, Y. Mi, L. Qiu, S. Bian and J. Wang, “Clinical Characteristics and Outcomes of Mixed Phenotype Acute Leukemia with Philadelphia Chromosome Positive and/or Bcr-Abl Positive in Adult,” International Journal of Hematology, Vol. 94, No. 5, 2011, pp. 552-555. doi:10.1007/s12185-011-0953-1
[3] P. Tosi, G. Barosi, C. Lazzaro, V. Liso, M. Marchetti, E. Morra, A. Pession, G. Rosti, A. Santoro, P. L. Zinzani and S. Tura, “Consensus Conference on the Management of Tumor Lysis Syndrome,” Hae-matologica, Vol. 93, No. 12, 2008, pp. 1877-1885. doi:10.3324/haematol.13290
[4] N. Zojer and H. Ludwig, “Hematological Emergencies,” Annals of Oncology, Vol. 18, No. Supplement 1, 2007, pp. i45-i48. doi:10.1093/annonc/mdl450
[5] H. Wada, T. Nagano, M. Tomeoku, M. Kuto, Y. Karitani, K. Deguchi and S. Shirakawa, “Coagulant and Fibrinolytic Activities in the Leukemic Cell Lysates,” Thrombosis Research, Vol. 30, No. 4, 1983, pp. 315-322. doi:10.1016/0049-3848(83)90223-2
[6] M. Levi and H. T. Cate, “Disseminated Intravascular Coagulation,” The New England Journal of Medicine, Vol. 341, No. 8, 1999, pp. 586-592. doi:10.1056/NEJM199908193410807
[7] T. Iba, E. Nakarai, T. Takayama, K. Nakajima, T. Sasaoka and Y. Ohno, “Combination Effect of Antithrombin and Recombinant Human Soluble Thrombomodulin in a Lipopolysaccharide Induced Rat Sepsis Model,” Critical Care, Vol. 13, No. 6, 2009, p. R203. doi:10.1186/cc8210
[8] K. Yamakawa, S. Fujimi, T. Mohri, H. Matsuda, Y. Nakamori, T. Hirose, O. Tasaki, H. Ogura, Y. Kuwagata, T. Hamasaki and T. Shimazu, “Treatment Effects of Recombinant Human Soluble Thrombomodulin in Patients with Severe Sepsis: A Historical Control Study,” Critical Care, Vol. 15, No. 3, 2011, p. R123. doi:10.1186/cc10228
[9] S. Moll, C. Lindley, S. Pescatore, D. Morrison, K. Tsuruta, M. Mohri, M. Serada, M. Sata, H. Shimizu, K. Yamada and G. C. White, “Phase I Study of a Novel Recombinant Human Soluble Thrombomodulin, ART-123,” Journal of Thrombosis and Haemostasis, Vol. 2, No. 10, 2004, pp. 1745-1751. doi:10.1111/j.1538-7836.2004.00927.x
[10] H. Saito, S. Maruyama, S. Shimazaki, Y. Yamamoto, N. Akikawa, R. Ohno, A. Hirayama, T. Matsuda, H. Asakura, M. Nakashima and N. Aoki, “Efficacy and Safety of Recombinant Human Soluble Thrombomodulin (ART-123) in Disseminated Intravascular Coagulation: Results of a Phase III, Randomized, Double-Blind Clinical Trial,” Journal of Thrombosis and Haemostasis, Vol. 5, No. 1, 2007, pp. 31-41. doi:10.1111/j.1538-7836.2006.02267.x
[11] F. B. Taylor Jr, C. H. Toh, W. K. Hoots, H. Wada and M. Levi, “Towards Definition, Clinical and Laboratory Criteria and a Scoring System for Disseminated Intravascular Coagulation,” Thrombosis and Haemostasis, Vol. 86, No. 5, 2001, pp. 1327-1330.
[12] E. Matutes, W. F. Pickl, M. Van’t Veer, et al., “Mixed-Phenotype Acute Leukemia: Clinical and Laboratory Features and Outcome in 100 Patients Defined According to the WHO 2008 Classification,” Blood, Vol. 117, No. 11, 2011, pp. 3163-3171. doi:10.1182/blood-2010-10-314682
[13] M. C. Bene, G. Castoldi, W. Knapp, et al., “Proposals for the Immunological Classification of Acute Leukemias. European Group for the Immunological Characterization of Leukemias (EGIL),” Leukemia, Vol. 9, No. 10, 1995, pp. 1783-1786.
[14] S. Killick, E. Matutes, R. L. Powles, et al., “Outcome of Biphenotypic Acute Leukemia,” Haematologica, Vol. 84, No. 8, 1999, pp. 699-706.
[15] Y, Zhang, D, Wu, A. Sun, et al., “Clinical Characteristics, Biological Profile, and Outcome of Biphenotypic Acute Leukemia: A Case Series,” Acta Haematologica, Vol. 125, No. 4, 2011, pp. 210-218. doi:10.1159/000322594
[16] I. Maruyama, “Recombinant Thrombomodulin and Activated Protein C in the Treatment of Disseminated Intravascular Coagulation,” Thrombosis and Haemostasis, Vol. 82, No. 2, 1999, pp. 718-721.
[17] E. Ogawa, H. Yagasaki, M. Kato, et al., “Successful Treatment of Disseminated Intravascular Coagulation in a Child with Acute Myelogenous Leukaemia Using Recombinant Thrombomodulin,” British Journal of Haematology, Vol. 149, No. 6, 2010, pp. 911-912. doi:10.1111/j.1365-2141.2010.08135.x
[18] K. Abeyama, D. M. Stern, Y. Ito, et al., “The N-Terminal Domain of Throm-bomodulin Sequesters High-Mobility Group-B1 Protein, a Novel Anti-Inflammatory Mechanism,” The Journal of Clinical Investigation, Vol. 115, No. 5, 2005, pp. 1267-1274.
[19] T. Ito, K. Kawahara, K. Okamoto, et al., “Proteolytic Cleavage of High Mobility Group Box 1 Protein by Thrombin-Thrombomodulin Complexes,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 28, No. 10, 2008, pp. 1825-1830. doi:10.1161/ATVBAHA.107.150631

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.