Share This Article:

Electrochemical and Photoelectrochemical Decoloration of Amaranth Dye Azo Using Composited Dimensional Stable Anodes

Abstract Full-Text HTML XML Download Download as PDF (Size:1145KB) PP. 136-143
DOI: 10.4236/jep.2013.41016    4,073 Downloads   6,165 Views   Citations

ABSTRACT

In this paper we report the results of our experimental work conducted to decoloration of a well-known highly toxic Amaranth dye by electrochemical and photoelectrochemical methods. Throughout this investigation were used two different Dimensional Stable Anode (DSA) electrodes, namely, IrO2-Ru2O-SnO2-TiO2/Ti and Ru2O-SnO2-TiO2/Ti. The experimental results show that IrO2-Ru2O-SnO2-TiO2/Ti electrode has higher performance on amaranth decoloration than Ru2O-SnO2-TiO2/Ti electrode, but with the disadvantage of higher energy consumption. For higher degradation of Amaranth dye with both DSA electrodes, the process was carried out via photoelectrochemical method. Our experimental results clearly shown the decrease in absorbance of all UV-Vis peaks due to the mineralization of the azo dye; also, it was noteworthy photoelectrochemical process consumes less energy under the same experimental conditions than electrochemical process. The IrO2-Ru2O-SnO2-TiO2/Ti electrode reaches a higher degradation degree of Amaranth solutions than Ru2O-SnO2-TiO2/Ti electrode using a photoelectrochemical technique.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Salazar-Gastélum, E. Reynoso-Soto, S. Lin, S. Perez-Sicairos and R. Félix-Navarro, "Electrochemical and Photoelectrochemical Decoloration of Amaranth Dye Azo Using Composited Dimensional Stable Anodes," Journal of Environmental Protection, Vol. 4 No. 1, 2013, pp. 136-143. doi: 10.4236/jep.2013.41016.

References

[1] C. Cripps, J. A. Bumpus and S. D. Aust, “Biodegradation of Azo and Heterocyclic Dyes by Phanerochaete Chrysosporium,” Applied and Environmental Microbiology, Vol. 56, No. 4, 1990, pp. 1114-1118.
[2] G. Centi, A. Grande and S. Perathoner, “Catalytic Conversion of MTBE to Biodegradable Chemicals in Contaminated Water,” Catalysis Today, Vol. 75, No. 1-4, 2002, pp. 69-76. doi:10.1016/S0920-5861(02)00046-9
[3] K. Huang, R. C. Couttenye and G. E. Hoag, “Kinetics of Heat-Assisted Persulfate Oxidation of Methyl Tert-Butyl Ether (MTBE),” Chemosphere, Vol. 49, No. 4, 2002, pp. 413-420. doi:10.1016/S0045-6535(02)00330-2
[4] N. Daneshvar, S. Aber, V. Vatanpour and M. H. Rasoulifard, “Electro-Fenton Treatment of Dye Solution Containing Orange II: Influence of Operational Parameters,” Journal of Electroanalytical Chemistry, Vol. 615, No. 2, 2008, pp. 165-174. doi:10.1016/j.jelechem.2007.12.005
[5] N. Daneshvar, H. Ashassi-Sorkhabi and M. B. Kasiri, “Decolorization of Dye Solution Containing Acid Red 14 by Electrocoagulation with a Comparative Investigation of Different Electrode Conections,” Journal of Hazardous Materials, Vol. 112, No. 1-2, 2004, pp. 55-62. doi:10.1016/j.jhazmat.2004.03.021
[6] M. F. Elahmadi, N. Bensalah and A. Gadri, “Treatment of Aqueous Wastes Contaminated with Congo Red Dye by Electrochemical Oxidation and Ozonation Processes,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1163-1169. doi:10.1016/j.jhazmat.2009.02.139
[7] M. R. V. Lanza and R. Bertazzoli, “Cyanide Oxidation from Wastewater in a Flow Electrochemical Reactor,” Industrial & Engineering Chemistry Research, Vol. 41, No. 1, 2002, pp. 22-26. doi:10.1021/ie010363n
[8] G. R. P. Malpass, D. W. Miwa, A. C. P. Miwa, S. A. S. Machado and A. J. Motheo, “Photo-Assisted Electrochemical Oxidation of Atrazine on a Comercial Ti/Ru0.3Ti0.7O2 DSA Electrode,” Environmental Science & Technology, Vol. 41, No. 20, 2007, pp. 7120 7125. doi:10.1021/es070798n
[9] M. Panizza and G. Cerisola, “Electrocatalytic Materials for the Electrochemical Oxidation of Synthetic Dyes,” Applied Catalysis B, Vol. 75, No. 1-2, 2007, pp. 95-101. doi:10.1016/j.apcatb.2007.04.001
[10] V. K. Gupta, R. Jain, A. Mittal, T. A. Saleh, A. Nayak, S. Agarwal and S. Sikarwar, “Photo-Catalytic Degradation of Toxic Dye Amaranth on TiO2/UV in Aqueous Suspensions,” Materials Science and Engineering: C, Vol. 32, No. 1, 2012, pp. 12-17. doi:10.1016/j.msec.2011.08.018
[11] R. Semdé, D. Pierre, G. Geuskens, M. Devleeschouwer and A. J. Mo?s, “Study of Some Important Factors In volved in Azo Derivative Reduction by Clostridium Per fringens,” International Journal of Pharmaceutics, Vol. 161, No. 1, 1998, pp. 45-54. doi:10.1016/S0378-5173(97)00327-X
[12] L. Fan, Y. Zhou, W. Yang, G. Chen and F. Yang, “Electrochemical Degradation of Amaranth Aqueous Solution on ACF,” Journal of Hazardous Materials, Vol. 137, No. 2, 2006, pp. 1182-1188. doi:10.1016/j.jhazmat.2006.04.008
[13] L. Fan, Y. Zhou, W. Yang, G. Chen and F. Yang, “Electrochemical Degradation of Aqueous Solution of Amaranth Azo Dye on ACF under Potentiostatic Model,” Dyes and Pigments, Vol. 76, No. 2, 2008, pp. 440-446. doi:10.1016/j.dyepig.2006.09.013
[14] S. Hattori, M. Doi, E. Takahashi, T. Kurosu, M. Nara, S. Nakamatsu, Y. Nishiki, T. Furuta and M. Iida, “Electrolytic Decomposition of Amaranth Dyestuff Using Diamond Electrodes,” Journal of Applied Electrochemistry, Vol. 33, No. 1, 2003, pp. 85-91. doi:10.1023/A:1022945714152
[15] M. Karkmaz, E. Puzenat, C. Guillard and J. M. Herrmann, “Photocatalytic Degradation of the Alimentary Azo Dye Amaranth Mineralization of the Azo Group to Nitrogen,” Applied Catalysis B, Vol. 51, No. 3, 2004, pp. 183-194. doi:10.1016/j.apcatb.2004.02.009
[16] A. I. del Rio, J. Bonastre, J. Molina and F. Cases, “Influence of Electrochemical Reduction and Oxidation Processes on the Decolourisation and Degradation of C. I. Reactive Orange 4 Solutions,” Chemosphere, Vol. 75, No. 10, 2009, pp. 1329-1337. doi:10.1016/j.chemosphere.2009.02.063
[17] S. A. V. Eremia, D. Chevalier-Lucia, G. Radu and J. Marty, “Optimization of Hydroxyl Radical Formation Using TiO2 as Photocatalyst by Response Surface Methodology,” Talanta, Vol. 77, No. 2, 2008, pp. 858-862. doi:10.1016/j.talanta.2008.07.056
[18] M. V. B. Zanoni, J. J. Sene, H. Selcuk and M. A. Anderson, “Photoelectrocatalytic Production of Chlorine on Nanocrystalline Titanium Dioxide Thin Film Electrode,” Environmental Science & Technology, Vol. 38, No. 11, 2004, pp. 3203-3208. doi:10.1021/es0347080

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.