Share This Article:

Electromagnetic Oscillations in a Spherical Conducting Cavity with Dielectric Layers. Application to Linear Accelerators

Abstract Full-Text HTML XML Download Download as PDF (Size:557KB) PP. 32-42
DOI: 10.4236/jemaa.2013.51006    3,511 Downloads   5,185 Views   Citations

ABSTRACT

We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electrons trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

W. Zakowicz, A. Skorupski and E. Infeld, "Electromagnetic Oscillations in a Spherical Conducting Cavity with Dielectric Layers. Application to Linear Accelerators," Journal of Electromagnetic Analysis and Applications, Vol. 5 No. 1, 2013, pp. 32-42. doi: 10.4236/jemaa.2013.51006.

References

[1] W. Zakowicz, “Whispering-Gallery-Mode Resonances: A New Way to Accelerate Charged Particles,” Physical Review Letters, Vol. 95, No. 11, 2005, Article ID: 114801. doi:10.1103/PhysRevLett.95.114801
[2] W. Zakowicz, “Erratum: Whispering-Gallery-Mode Resonances: A New Way to Accelerate Charged Particles [Phys. Rev. Lett. 95, 114801 (2005)],” Physical Review Letters, Vol. 97, No. 10, 2006, Article ID: 109901. doi:10.1103/PhysRevLett.97.109901
[3] W. Zakowicz, “Particle Acceleration by Wave Scattering off Dielectric Spheres at Whispering-Gallery-Mode Resonance,” Physical Review Special Topics—Accelerators and Beams, Vol. 10, No. 10, 2007, Article ID: 101301. doi:10.1103/PhysRevSTAB.10.101301
[4] M. Ornigotti and A. Aiello, “Theory of Anisotropic Whispering-Gallery-Mode Resonators,” Physical Review A, Vol. 84, No. 1, 2011, Article ID: 013828. doi:10.1103/PhysRevA.84.013828
[5] T. V. Liseykina, S. Pirner and D. Bauer, “Relativistic Attosecond Electron Bunches from Laser-Illuminated Droplets,” Physical Review Letters, Vol. 104, No. 9, 2010, Article ID: 095002. doi:10.1103/PhysRevLett.104.095002
[6] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Physical Review Letters, Vol. 92, No. 4, 2004, Article ID: 043903. doi:10.1103/PhysRevLett.92.043903
[7] R. C. Taber and C. A. Flory, “Microwave Oscillators Incorporating Cryogenic Sapphire Dielectric Resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 42, No. 1, 1995, pp. 111-119. doi:10.1109/58.368306
[8] J. Krupka, K. Derzakowski, M. E. Tobar, J. Hartnett and R. G. Geyer, “Complex Permittivity of Some Ultralow Loss Dielectric Crystals at Cryogenic Temperatures,” Measurement Science and Technology, Vol. 10, No. 5, 1999, pp. 387-392. doi:10.1088/0957-0233/10/5/308
[9] J. D. Jackson, “Classical Electrodynamics,” 3rd Edition, John Wiley, New York, 1998.
[10] A. Moroz, “A Recursive Transfer-Matrix Solution for a Dipole Radiating inside and outside a Stratified Sphere,” Annals of Physics, Vol. 315, No. 2, 2005, pp. 352-418. doi:10.1016/j.aop.2004.07.002

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.