Inhibition of lectin adherence to tissue culture cells by prebiotic carbohydrates

DOI: 10.4236/abb.2013.41010   PDF   HTML   XML   5,989 Downloads   8,619 Views   Citations


Prebiotic carbohydrates, in addition to their ability to influence the colonic microbiota, are also able to inhibit attachment of pathogenic bacteria to epithelial cells. This effect is mediated via their structural similarity to the carbohydrate ligands, located on the mucosal cell surface to which bacterial lectins attach. However, the mechanism for this inhibition is not well understood. The goal of this research was to measure the effect of two prebiotic carbohydrates, galactooli-gosaccharide and polydextrose, on the binding kinetics of plant lectins, having known ligand specificity, to tissue culture cells. To measure adherence, competetion experiments were conducted with HEp-2 cells exposed to nine fluorescent-labeled lectins and either the cognate ligand or a prebiotic. Fluorescence microscopy and image analysis were used to quantify adherence. Lectins that were able to bind to target cells were significantly inhibited in the presence of the cognate ligands. When prebiotics were added, inhibittion of lectin binding was observed, depending on the structural similarity between the prebiotic and the cognate ligands. In general, PDX did not inhibit lectin attachment, whereas GOS significantly inhibited most lectins. This research suggests that receptor sites located on the surface of epithelial HEp-2 cells are structurally similar to GOS.

Share and Cite:

Maldonado, M. , Fangman, T. , Pinto, A. , Rupnow, J. and Hutkins, R. (2013) Inhibition of lectin adherence to tissue culture cells by prebiotic carbohydrates. Advances in Bioscience and Biotechnology, 4, 67-74. doi: 10.4236/abb.2013.41010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ofek, I., Hasty, D.J. and Doyle, R.J. (2003) Bacterial adhesion to animal cells and tissues. American Society for Microbiology, Washington DC.
[2] Klemm, P., Vejborg, R.M. and Hancock. V. (2010) Prevention of bacterial adhesion. Applied Microbiology and Biotechnology, 88, 451-459. doi:10.1007/s00253-010-2805-y
[3] Busscher, H.J. and Weerkamp, A.H. (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiology Letters, 46, 165-173. doi:10.1111/j.1574-6968.1987.tb02457.x
[4] Pieters, R.J. (2011) Carbohydrate mediated bacterial adhesion. In: Linke, D. and Goldman, A., Eds., Bacterial Adhesion. Chemestry, Biology and Physics, Springer, New York, 227-240.
[5] Ohlsen, K., Oelschlaeger, T.A., Hacker, J. and Khan. A.S. (2009) Carbohydrate receptors of bacterial adhesions: Implications and reflections. Topics in Current Chemistry, 288, 17-65. doi:10.1007/128_2008_10
[6] Gibson, G. and Roberfroid, M. B. (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125, 1401-1412.
[7] Ganan, M., Collins, M., Rastall, R., Hotchkiss, A.T., Chau, H.K., Carrascosa, A.V. and Martinez-Rodriguez, A.J. (2010) Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni. International Journal of Food Microbiology, 137, 181-185. doi:10.1016/j.ijfoodmicro.2009.12.007
[8] Ganan, M., Carrascosa, A.V., Pascual-Teresa, S. and Martinez-Rodriguez, A.J. (2009) Inhibition by yeast-derived mannoproteins of adherence to and invasion of caco-2 cells by Campylobacter jejuni. Journal of Food Protection, 72, 55-59.
[9] Spring, P., Wenk, C., Dawson, K. and Newman, K. (2000) The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Science, 79, 205-211.
[10] Cravioto, A., Tello, A., Villafán, H., Ruiz, J., del Vedovo, S. and Neeser, J.R. (1991) Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. The Journal of Infectious Diseases, 163, 1247-1255. doi:10.1093/infdis/163.6.1247
[11] Martin-Sosa, S., Martin, M.J. and Hueso, P. (2002) The sialylated fraction of milk oli-gosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. Journal of Nutrition, 132, 3067-3072.
[12] Newburg, D.S., Ruiz-Palacios, G.M. and Morrow, A.L. (2005) Human milk glycans protect infants against enteric pathogens. Annual Review of Nutrition, 25, 37-58. doi:10.1146/annurev.nutr.25.050304.092553
[13] Rüdiger, H. and Gabius, H.J. (2001) Plant lectins: Occurrence, biochemi-stry, functions and applications. Glycoconjugate Journal, 18, 589-613. doi:10.1023/A:1020687518999
[14] Pusztai, A., Bardocz, S. and Ewen, S.W. (2008) Uses of plant lectins in bioscience and biomedicine. Frontiers in Bioscience, 13, 1130-1140. doi:10.2741/2750
[15] Zeng, X. and Shen, Z. (2008) Microor-ganism detection and analysis using carbohydrate and lectin recognition. US Patent No. 2008/0193965A1, 1-24.
[16] Koliwer-Brandl, H., Siegert, N., Umnus, K., Kelm, A., Tolkach, A., Kulozik, U., Kuballa, J., Cartellieri, S. and Kelm, S. (2011) Lectin inhibition assays for the analysis of bioactive milk sialoglycoconjugates. International Dairy Journal, 21, 413-420. doi:10.1016/j.idairyj.2011.01.005
[17] Chen, S., Zheng, T., Shortreed, M.R., Alexander, C. and Smith, L.M. (2007) Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Analytical Chemistry, 79, 5698-5702. doi:10.1021/ac070423k
[18] Alam, S.M., Whitford, P., Cushley, W., George, W.D. and Campbell, M. (1990) Flow cytometric analysis of cell surface carbohydrates in metastatic human breast cancer. British Journal of Cancer, 62, 238-242. doi:10.1038/bjc.1990.267
[19] Mobley, H.L., Jarvis, K.G., Elwood, J.P., Whittle, D.I., Lockatell, C.V., Russell, R.G., Johnson, D.E., Donnenberg, M.S. and Warren, J.W. (1993) Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: The role of αGal(1-4) βGal binding in virulence of a wild-type strain. Molecular Microbiology, 10, 143-155. doi:10.1111/j.1365-2958.1993.tb00911.x
[20] Boudeau, ?., Barnich, N. and Darfeuille-Michaud, A. (2001) Type 1 pilimediated adherence of Escherichia coli strain LF82 isolated from Crohn’s disease is involved in bacterial invasion of intestinal epithelial cells. Molecular Microbiology, 39, 1272-1284. doi:10.1111/j.1365-2958.2001.02315.x
[21] Str?mberg, N., Marklund, B.-I., Lund, B., Hamers, A., Gaastra, W. and Anders, K.A. (2010) Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Gala 1-4Gal-containing isoreceptors. The EMBO Journal, 9, 2001-2010.
[22] Fader, R.C. and Davis, C.P. (1980) Effect of piliation on Klebsiella pneumoniae infection in rat bladders. Infection and Immunity, 30, 554-561.
[23] Kisiela, D., Laskowska, A., Sapeta, A., Kuczkowski, M., Wieliczko, A. and Ugorski, M. (2006) Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Micro-biology, 152, 1337-1346. doi:10.1099/mic.0.28588-0
[24] Firon, N., Ofek, I. and Sharon, N. (1983) Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydrate Research, 120, 235-249. doi:10.1016/0008-6215(83)88019-7
[25] Id?np??n-Heikkil?, I., Simon, P. M., Zopf, D., Vullo, T., Cahill, P., Sokol, K. and Tuomanen, E. (1997) Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. International Journal of Infectious Diseases, 176, 704-712. doi:10.1086/514094
[26] Pracht, D., Elm, C., Gerber, J., Bergmann, S., Rohde, M., Seiler, M., Kim, K.S., Jenkinson, H.F., Nau, R. and Hammerschmidt, S. (2005) PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infection and Immunity, 73, 2680-2689. doi:10.1128/IAI.73.5.2680-2689.2005
[27] Bidhendi, S.M., Sattari, M., Pourbakhsh, S.A., Mobarez, A., Vandyousefi, J., Khaki, P., Heidari, M.H. and Kazemnejad, A. (2007) Blocking adherence of uropathogenic Escherichia coli isolate to HEP-2 cells and bladder of mice in the presence of antibody against p-fimbriae. Biologicals, 35, 99-105. doi:10.1016/j.biologicals.2006.03.012
[28] Nguyen Thi, P.L., Yassibanda, S., Aidara, A., Le Bouguénec, C. and Germani, Y. (2003) Enteropathogenic Klebsiella pneumoniae HIV-infected adults, Africa. Emerging Infectious Diseases Journal, 9, 135-137. doi:10.3201/eid0901.020138
[29] Boddicker, J.D., Ledeboer, N.A., Jagnow, J., Jones, B.D. and Clegg, S. (2002) Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica Serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Molecular Microbiology, 45, 1255-1265. doi:10.1046/j.1365-2958.2002.03121.x
[30] Searle, L.E.J., Best, A., Nunez, A., Salguero, F.J., Johnson, L., Weyer, U., Dugdale, A.H., Cooley, W.A., Carter, B., Jones, G., Tzortzis, G., Woodward, M.J. and La Ragione, R.M. (2009) A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica Serovar Typhimurium infection in mice. Journal of Medical Microbiologyy, 58, 37-48. doi:10.1099/jmm.0.004390-0
[31] Shoaf, K., Mulvey, G.L., Armstrong, G.D. and Hutkins. R.W. (2006) Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infection and Immunity, 74, 6920-6928. doi:10.1128/IAI.01030-06
[32] Sinclair, H.R., de Slegte, J., Gibson, G.R. and Rastall, R.A. (2009) Galactooligosaccharides (GOS) inhibit Vibrio cholerae toxin binding to its GM1 receptor. Journal of Agricultural and Food Chemistry, 57, 3113-3119. doi:10.1021/jf8034786
[33] Quintero, M., Maldonado, M., Perez-Munoz, M., Jimenez, R., Fangman, T., Rupnow, J., Wittke, A., Russell, M. and Hutkins, R. (2011) Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Current Microbiology, 62, 1448-1454. doi:10.1007/s00284-011-9882-8
[34] Poretz R.D. and Goldstein I. J. (1970) An examination of the topography of the saccharide binding sites of concanavalin A and of the forces involved in complexation. Biochemistry, 9, 2890-2896. doi:10.1021/bi00816a021
[35] Iskratsch, T., Braun, A., Paschinger, K. and Wilson, I.B. H. (2009) Specificity analysis of lectins and antibodies using remodeled glycoproteins. Analytical Biochemistry, 386, 133-146. doi:10.1016/j.ab.2008.12.005
[36] Munson, L., Kao, J.J. and Schlafer, D.H. (1989) Characterization of glycoconjugates in the bovine endometrium and chorion by lectin histochemistry. Journal of Reproduction and Fertility, 87, 509-517. doi:10.1530/jrf.0.0870509
[37] Lis, H. and Sharon, N. (1986) Lectins as molecules and as tools. Annual Review of Biochemistry, 55, 35-67. doi:10.1146/

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.