Gold Mining and Mercury Bioaccumulation in a Floodplain Lake and Main Channel of the Tambopata River, Perú


Contamination of water bodies by inorganic mercury (Hg[II]) used in placer mining of gold deposits in the Madre de Dios Department, Perú, contributes to the bioaccumulation of methylmercury (MeHg) in fish tissue. We measured MeHg and total Hg (THg) concentrations (mg/kg wet weight [ww] tissue) of thirteen fish species from the Tambopata River, Perú, and the connected oxbow lake Tres Chimbadas. We also used stable isotope analysis (δ15N and δ13C) to estimate trophic positions of fishes. Average MeHg concentrations of fish species ranged from 0.042 mg/kg ww (Satanoperca jurupari) to 0.463 mg/kg ww (Hoplias malabaricus) in the main channel and from 0.090 mg/kg ww (Parauchenipterus sp.) to 1.282 mg/kg ww (Pimelodina flavipinnis) in the lake. Spearman rank correlation indicated that trophic position had no influence on MeHg concentrations of species in the main channel, but in the lake, trophic positions of species were positively associated with MeHg. Migrations of the pimelodid catfish surveyed from the main channel are well documented. Because little gold mining occurs at our study site, fishes from the main channel may be bioaccumulating MeHg from areas where mining is widespread. Fish species that reside in the lake are relatively sedentary and migration is limited by the brief period of floodplain inundation and the long, narrow corridor that connects the lake to the main channel; lake sediments are therefore the likely source for MeHg bioaccumulation. Five out of the eight fish species surveyed from the main channel and two out of the five species from the lake had MeHg levels higher than United States Environmental Protection Agency fish tissue criterion for human consumption.

Share and Cite:

K. Roach, N. Jacobsen, C. Fiorello, A. Stronza and K. Winemiller, "Gold Mining and Mercury Bioaccumulation in a Floodplain Lake and Main Channel of the Tambopata River, Perú," Journal of Environmental Protection, Vol. 4 No. 1, 2013, pp. 51-60. doi: 10.4236/jep.2013.41005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. I. Sweet and J. T. Zelikoff, “Toxicology and Immunotoxicology of Mercury: A Comparative Review in Fish and Humans,” Journal of Toxicology and Environmental Health, Part B Critical Reviews, Vol. 4, No. 2, 2001, pp. 161-205. doi:10.1080/109374001300339809
[2] H. M. Chan, A. M. Scheuhammer, A. Ferran, C. Loupelle, J. Holloway and S. Weech, “Impacts of Mercury on Freshwater Fish-Eating Wildlife and Humans,” Human and Ecological Risk Assessment, Vol. 9, No. 4, 2003, pp. 867-883. doi:10.1080/713610013
[3] D. Borum, M. K. Manibusan, R. Schoeny and E. L. Winchester, “Water Quality Criterion for the Protection of Human Health: Methylmercury,” Office of Science and Technology: Office of Water, U.S. Environmental Protection Agency, Washington DC, 2001.
[4] J. Groenendijk and F. Hajek, “Giants of the Madre de Dios,” Frankfurt Zoological Society, Lima, Peru, 2006.
[5] J. J. Swenson, C. E. Carter, J. C. Domec and C. I. Delga do, “Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports,” PLOS One, Vol. 6, No. 4, 2011, p. e18875. doi:10.1371/journal.pone.0018875
[6] CNN Money, “Commodities—Oil, Silver and Gold Prices,” 2012.
[7] W. C. Pfeiffer and L. D. Lacerda, “Mercury Inputs into the Amazon Region, Brazil,” Environmental Technology Letters, Vol. 9, No. 4, 1988, pp. 325-330. doi:10.1080/09593338809384573
[8] A. C. Gutleb, C. Schenck, and E. Staib, “Giant Otter (Pte ronura Brasiliensis) at Risk? Total Mercury and Methyl mercury Levels in Fish and Otter Scats, Peru,” Ambio, Vol. 26, No. 8, 1997, 511-514.
[9] M. E. McClain and R. J. Naiman, “Andean Influences on the Biogeochemistry and Ecology of the Amazon River,” BioScience, Vol. 58, No. 4, 2008, pp. 325-338. doi:10.1641/B580408
[10] M. Goulding, C. Ca?as, R. Barthem, B. Forsberg and H. Ortega, “Amazon Headwaters: Rivers, Wildlife, and Conservation in Southeastern Peru, “Asociación Para la Con servacióne la Cuenca Amazónica and Amazon Conservation Association, Lima, 2003.
[11] D. C. Depew, N. Basu, N. M. Burgess, L. M. Campbell, E. W. Devlin, P. E. Drevnick, C. R. Hammerschmidt, C. A. Murphy, M. B. Sandheinrich and J. G. Wiener, “Toxicity of Dietary Methylmercury to Fish: Derivation of Ecologically Meaningful Threshold Concentrations,” Environ mental Toxicology and Chemistry, Vol. 31, No. 7, 2012, pp. 1-12. doi:10.1002/etc.1859
[12] IUCN (International Union for Conservation of Nature), “IUCN red list of threatened species, a global species assessment,” In: J. E. M. Baillie, C. Hilton-Taylor and S. N. Stuart, Eds., Glandand Cambridge, 2004.
[13] F. C. W. Rosas, J. Zuanon and S. K. Carter, “Feeding Ecology of the Giant Otter,” Biotropica, Vol. 31, No. 3, 1999, pp. 502-506. doi:10.1111/j.1744-7429.1999.tb00393.x
[14] C. Watanabe and H. Satoh, “Evolution of Our Understanding of Methylmercury as a Health Threat,” Environ mental Perspectives, Vol. 104, Suppl. 2, 1996, pp. 367 379.
[15] C. D. Wren, “Probable Case of Mercury Poisoning in a Wild Otter, Lutra canadensis, in Northwestern Ontario,” Canadian Field Naturalist, Vol. 99, No. 1, 1985, pp. 112 114.
[16] A. C. Gutleb, A. Kranz, G. Nechay and A. Toman, “Heavy Metal Concentrations in Livers and Kidneys of the Otter (Lutra lutra) from Central Europe,” Bulletin of Environmental Contamination and Toxicology, Vol. 60, No. 2, 1998, pp. 273-279. doi:10.1007/s001289900621
[17] N. Basu, A. M. Scheuhammer, K. Rouvinen-Watt, N. Grochowina, K. Klenavic, R. D. Evans and H. M. Chan, “Methylmercury Impairs Components of the Cholinergic System in Captive Mink (Mustela vison),” Toxicological Sciences, Vol. 91, No. 1, 2006, pp. 202-209. doi:10.1093/toxsci/kfj121
[18] C. C. Gilmour, E. A. Henry and R. Mitchell, “Sulfate Sti mulation of Mercury Methylation in Fresh-Water Sediments,” Environmental Science and Technology, Vol. 26, No. 11, 1992, pp. 2281-2287. doi:10.1021/es00035a029
[19] G. Cabana and J. B. Rasmussen, “Modelling Food Chain Structure and Contaminant Bioaccumulation Using Stable Nitrogen Isotopes,” Nature, Vol. 372, No. 6503, 1994, pp. 255-257. doi:10.1038/372255a0
[20] K. A. Kidd, R. H. Hesslein, R. J. P. Fudge and K. A. Hal lard, “The Influence of Trophic Level as Measured by δ15N on Mercury Concentrations in Freshwater Organisms,” Water, Air, and Soil Pollution, Vol. 80, No. 1-4, 1995, pp. 1011-1015. doi:10.1007/BF01189756
[21] D. M. Post, “Using Stable Isotopes to Estimate Trophic Position: Models, Methods, and Assumptions,” Ecology, Vol. 83, No. 3, 2002, pp. 703-718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
[22] M. A. Vanderklift and S. Ponsard, “Sources of Variation in Consumer-Diet δ15N Enrichment: A Meta-Analysis,” Oecologia, Vol. 136, No. 2, 2003, pp. 169-182. doi:10.1007/s00442-003-1270-z
[23] S. K. Hamilton, J. Kellndorfer, B. Lehner and M. Tobler, “Remote Sensing of Floodplain Geomorphology as a Surrogate for Biodiversity in a Tropical River System (Madre de Dios, Peru),” Geomorphology, Vol. 89, No. 1-2, 2007, pp. 23-38. doi:10.1016/j.geomorph.2006.07.024
[24] M. E. Puhakka, R. Kalliola, M. Rajasilta and J. Salo, “River Types, Site Evolution and Successional Vegeta tion Patterns in Peruvian Amazonia,” Journal of Biogeography, Vol. 19, No. 6, 1992, pp. 651-665. doi:10.2307/2845707
[25] J. Groenendijk, F. Kajek, S. Isola and C. Schenk, “Giant Otter Project in Peru Field Trip and Activity Report— 2000,” International Union for Conservation of Nature Otter Specialist Group Bulletin, Vol. 18, No. 2, 2001, pp. 76-85.
[26] D. A. Arrington and K. O. Winemiller, “Preservation Ef fects on Stable Isotope Analysis of Fish Muscle,” Tran sactions of the American Fisheries Society, Vol. 131, No. 2, 2002, pp. 337-342. doi:10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2
[27] C. W. Shade, “Automated Simultaneous Analysis of Mo nomethyl and Mercuric Hg in Biotic Samples by Hg Thiourea Complex Liquid Chromatography Following Acidic Thiourea Leaching,” Environmental Science and Technology, Vol. 42, No. 17, 2008, pp. 6604-6610. doi:10.1021/es800187y
[28] J. Olley, “Mercury in Fish and the News Media,” Marine Pollution Bulletin, Vol. 4, No. 9, 1973, p. 143. doi:10.1016/0025-326X(73)90009-X
[29] American Public Health Association, “Standard Methods for the Examination of Water and Waste-Water,” 19th Edition, American Water Works Association, and Water Environment Federation, Washington, DC, 1992.
[30] L. E. Fernandez and V. H. Gonzalez, “Niveles del Mercurio en Peces de Madre de Dios,” Carnegie Institute for Science, Department of Global Ecology, Stanford University, Stanford, 2009.
[31] N. Bloom, “On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 49, No. 5, 1992, pp. 1010-1017. doi:10.1139/f92-113
[32] A. C. Gutleb, A. Helsberg and C. Mitchell, “Heavy Metal Concentrations in Fish from a Pristine Rainforest Valley in Peru: A Baseline Study before the Start of Oil-Drilling Activities,” Bulletin of Environmental Contamination and Toxicology, Vol. 69, No. 4, 2002, pp. 523-529. doi:10.1007/s00128-002-0093-7
[33] C. A. Cooke, P. H. Balcom, H. Biester and A. P. Wolfe, “Over Three Millennia of Mercury Pollution in the Peruvian Andes,” Proceedings of the National Academy of Sciences, Vol. 106, No. 22, 2009, pp. 8830-8834. doi:10.1073/pnas.0900517106
[34] W.E. Brooks, E. Sandoval, M.A. Yepez, and H. Howell, “Peru Mercury Inventory 2006,” US Geological Survey, Open-File Report 2007-1252, 2007.
[35] Instituto Geológico Minero y Metalúrgico, Lima, 2009.
[36] S. Ramamoorthy, S. Springthorpe and D. J. Kushner, “Competition for Mercury between River Sediment and Bacteria,” Bulletin of Environmental Contamination & Toxicology, Vol. 17, No. 5, 1977, pp. 505-511. doi:10.1007/BF01685971
[37] S. C. Choi and R. Bartha, “Environmental Factors Af fecting Mercury Methylation in Estuarine Sediments,” Bulletin of Environmental Contamination and Toxicology, Vol. 53, No. 6, 1994, pp. 805-812. doi:10.1007/BF00196208
[38] R. F. C. Mantoura, A. Dickson and J. P. Riley, “The Complexation of Metals with Humic Materials in Natural Waters,” Estuarine and Coastal Marine Science, Vol. 6, No. 4, 1978, pp. 387-408. doi:10.1016/0302-3524(78)90130-5
[39] R. J. Breteler, I. Valiela and J. M. Teal, “Bioavailability of Mercury in Several North-Eastern U.S. Spartina Ecosystems,” Estuarine, Coastal and Shelf Science, Vol. 12, No. 2, 1981, pp. 155-166. doi:10.1016/S0302-3524(81)80093-X
[40] W. J. Langston, “Metals in Sediments and Benthic Orga nisms in the Mersey Estuary,” Estuarine, Coastal and Shelf Science, Vol. 23, No. 2, 1986, pp. 239-261. doi:10.1016/0272-7714(86)90057-0
[41] C. Y. Chen, M. Dionne, B. M. Mayes, D. M. Ward, S. Sturup and B. P. Jackson, “Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine,” Environmental Science and Technology, Vol. 43, No. 6, 2009, pp. 1804-1810. doi:10.1021/es8017122
[42] K. O. Winemiller and D. B. Jepsen, “Effects of Seasonality and Fish Movement on Tropical River Food Webs,” Journal of Fish Biology, Vol. 53, Suppl. A, 1998, pp. 267 296. doi:10.1111/j.1095-8649.1998.tb01032.x
[43] R. B. Barthem and M. Goulding, “The Catfish Connection: Ecology, Migration, and Conservation of Amazon Predators,” Columbia University Press, New York, 1997.
[44] M. J. de Jesús and C. C. Kohler, “The Commercial Fishe ry of the Peruvian Amazon,” Fisheries, Vol. 29, No. 4, 2004, 10-16. doi:10.1577/1548-8446(2004)29[10:TCFOTP]2.0.CO;2
[45] A. T. Jackson, “The Mercury Problem in Recently Formed Reservoirs of Northern Manitoba (Canada): Effects of Impoundment and Other Factors on the Production of Methyl Mercury by Microorganisms in Sediments,” Ca nadian Journal of Aquatic Sciences, Vol. 45, No. 1, 1988, pp. 97-121. doi:10.1139/f88-012
[46] R. Schetagne, J. F. Doyon and J. J. Fournier, “Export of Mercury Downstream from Reservoirs,” Science of the Total Environment,” Vol. 260, No. 1-3, 2000, pp. 135 145. doi:10.1016/S0048-9697(00)00557-X
[47] L. D. Hylander, J. Gr?hn, M. Tropp, A. Vikstr?m, H. Wolpher, E. de Castro e Silva, M. Meili and L. J. Oliveria, “Fish Mercury Increase in Lago Manso, a New Hydroelectric Reservoir in Tropical Brazil,” Journal of Environmental Management, Vol. 81, No. 2, 2006, pp. 155 166. doi:10.1016/j.jenvman.2005.09.025
[48] K. Ashe, “Elevated Mercury Concentrations in Humans of Madre de Dios, Peru,” PLOS One, Vol. 7, No. 3, 2012, p. e33305. doi:10.1371/journal.pone.0033305
[49] World Health Organization, “Environmental Health Criteria. I. Mercury,” World Health Organization, Geneva, 1976.
[50] A. A. P. Boischio and D. Henshel, “Fish Consumption, Fish Lore, and Mercury Pollution—Risk Communication for the Madeira River People,” Environmental Research Section A, Vol. 84, No. 2, 2000, pp. 108-126. doi:10.1006/enrs.2000.4035
[51] [51] B. Wheatley and S. Paradis, “Balancing Human Exposure, Risk and Reality: Questions Raised by the Canadian Aboriginal Methylmercury Program,” Neurotoxicology, Vol. 17, No. 1, 1996, pp. 241-249.
[52] [52] B. Wheatley and M. A. Wheatley, “Methylmercury and the Health of Indigenous Peoples: A Risk Management Challenge for Physical and Social Sciences and for Public Health Policy,” Science of the Total Environment, Vol. 259, No. 1-3, 2000, pp. 23-29. doi:10.1016/S0048-9697(00)00546-5

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.