The Uptake of Copper(II) Ions by Chelating Schiff Base Derived from 4-Aminoantipyrine and 2-Methoxybenzaldehyde

DOI: 10.4236/ijnm.2013.21001   PDF   HTML   XML   3,890 Downloads   8,994 Views   Citations


The Schiff base, 4-[(2-methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrizol-3(2H)-one (SB), was used for the first time to adsorb copper(II) ions in aqueous solution. Various parameters such as initial pH, agitation period and different initial concentration of copper(II) ions which influenced the adsorption capacity were investigated. The equilibrium adsorption data for copper(II) ions were fitted to Langmuir, Freundlich and Dubinin-Radushkevish isotherm models. The maximum monolayer adsorption capacity of SB as obtained from Langmuir isotherm was 5.64 mg/g. Kinetic data correlated well with the pseudo second-order kinetic model indicating that chemical adsorption was the rate limiting step.

Share and Cite:

Oo, C. , Osman, H. , Fatinathan, S. and Zin, M. (2013) The Uptake of Copper(II) Ions by Chelating Schiff Base Derived from 4-Aminoantipyrine and 2-Methoxybenzaldehyde. International Journal of Nonferrous Metallurgy, 2, 1-9. doi: 10.4236/ijnm.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. A. Susan, J. O. Trudy, R. M. Bricka and D. D. Adrian, “A Review of Potentially Low-Cost Sorbents for Heavy Metals,” Water Research, Vol. 33, No. 11, 1999, pp. 2469-2479. doi:10.1016/S0043-1354(98)00475-8
[2] N. Unlu and M. Ersoz, “Adsorption Characteristics of Heavy Metal Ions onto a Low Cost Biopolymeric Sorbents from Aqueous Solutions,” Journal of Hazardous Materials, Vol. 136, No. 2, 2006, pp. 272-280. doi:10.1016/j.jhazmat.2005.12.013
[3] C. I. Lee, W. F. Yang and C. I. Hsieh, “Removal of Copper(II) by Manganese-Coated Sand in a Liquid Fluidized-Bed Reactor,” Journal of Hazardous Materials, Vol. 114, No. 1-3, 2004, pp. 45-51. doi:10.1016/j.jhazmat.2004.06.033
[4] N. Boujelben, J. Bouzid and Z. Elouear, “Adsorption of Nickel and Copper onto Natural Iron Oxide-Coated Sand from Aqueous Solutions: Study in Single and Binary Systems,” Journal of Hazardous Materials, Vol. 163, No. 1, 2009, pp. 376-382. doi:10.1016/j.jhazmat.2008.06.128
[5] G. Palma, J. Freer and J. Baeza, “Removal of Metal Ions by Modified Pinus radiata Bark and tannins from Water Solutions,” Water Research, Vol. 37, No. 20, 2003, pp. 4974-4980. doi:10.1016/j.watres.2003.08.008
[6] Q. F. Yin, B. Z. Ju, S. F. Zhang, X. B. Wang and J. Z. Yang, “Preparation and Characteristics of Novel Dialdehyde Aminothiazhole Starch and Its Adsorption Properties for Cu(II) Ions from Aqueous Solution,” Carbohydrate Polymers, Vol. 72, No. 2, 2008, pp. 326-333. doi:10.1016/j.carbpol.2007.08.019
[7] G. Vazquez, J. Gonzalez-Alvarez, S. Freire, M. LopezLorenzo and G. Antorrena, “Removal of Cadmium and Mercury Ions from Aqueous Solution by Sorption on Treated Pinus pinaster Bark: Kinetics and Isotherms,” Bioresource Technology, Vol. 82, No. 3, 2002, pp. 247-251. doi:10.1016/S0960-8524(01)00186-9
[8] M. H. Mashhadizadeh, M. Pesteh, M. Talakesh, I. Sheeikhshoaie, M. M. Ardakani and M. A. Karimi, “Solid Phase Extraction of Copper(II) by Sorption on Octadecyl Silica Membrane Disk Modified with a New Schiff Base and Determination with Atomic Absorption Spectrometry,” Spectrochimica Acta Part B, Vol. 63, No. 8, 2008, pp. 885-888. doi:10.1016/j.sab.2008.03.018
[9] P. A. Amoyaw, M. Williams and X. R. Bu, “The Fast Removal of Low Concentration of Cadmium(II) from Aqueous Media by Chelating Polymers with Salicylaldehyde Units,” Journal of Hazardous Materials, Vol. 170, No. 1, 2009, pp. 22-26. doi:10.1016/j.jhazmat.2009.05.028
[10] E. A. Oliveira, S. F. Montanher, A. D. Andrade, J. A. Nobrega and M. C. Rollemberg, “Equilibrium Studies for the Sorption of Chromium and Nickel from Aqueous Solutions Using Raw Rice Barn,” Process Biochemistry, Vol. 40, No. 11, 2005, pp. 3485-3490. doi:10.1016/j.procbio.2005.02.026
[11] J. Febrianto, A. N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati and S. Ismadji, “Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies,” Journal of Hazardous Materials, Vol. 162, No. 2-3, 2009, pp. 616-645. doi:10.1016/j.jhazmat.2008.06.042
[12] Y. S. Ho and G. Mckay, “The Sorption of Lead(II) Ions on Peat,” Water Research, Vol. 33, No. 2, 1999, pp. 578-584. doi:10.1016/S0043-1354(98)00207-3
[13] F. Gode and E. Pehlivan, “Adsorption of Cr(III) Ions by Turkish Brown Coals,” Fuel Processing Technology, Vol. 86, No. 8, 2005, pp. 875-884. doi:10.1016/j.fuproc.2004.10.006
[14] D. Singh, K. P. Singh and V. K. Singh, “Trivalent Chromium Removal from Wastewater Using Low Cost Activated Carbon Derived from Agricultural Waste Material and Activated Carbon Fabric Cloth,” Journal of Hazardous Materials, Vol. 135, No. 1-3, 2006, pp. 280-295. doi:10.1016/j.jhazmat.2005.11.075
[15] V. C. Taty-Costodes, H. Fauduet, C. Porte and A. Delacroix, “Removal of Cd(II) and Pb(II) Ions from Aqueous Solutions by Adsorption onto Sawdust of Pinus sylvestris,” Journal of Hazardous Materials, Vol. B105, 2003, pp. 121-142. doi:10.1016/j.jhazmat.2003.07.009
[16] G. McKay, Y. S. Ho and J. C. Y. Ng, “Biosorption of Copper from Waste Waters: A Review,” Separation & Purification Reviews, Vol. 28, No. 1, 1999, pp. 87-125. doi:10.1080/03602549909351645
[17] Y. S. Ho, “Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods,” Polish Journal of Environmental Studies, Vol. 15, No. 1, 2006, pp. 81-86.
[18] K. Vijayaraghavan, T. V. N. Padmesh, K. Palanivelu and M. Velan, “Biosorption of Nickel (II) Ions onto Sargassum wightii: Application of Two-Parameter and Three-Parameter Isotherm Models,” Journal of Hazardous Materials, Vol. B133, 2006, pp. 304-308. doi:10.1016/j.jhazmat.2005.10.016
[19] B. Volesky, J. Weber and R. Vieira, “Biosorption of Cd and Cu by Different Types of Sargassum biomass,” Process Metallurgy, Vol. 9, 1999, pp. 473-482. doi:10.1016/S1572-4409(99)80136-9
[20] A. Dabrowski, “Adsorption—From Theory to Practice,” Advances in Colloid and Interface Science, Vol. 93, No. 1-3, 2001, pp. 135-224. doi:10.1016/S0001-8686(00)00082-8
[21] S. Al-Asheh, F. Banat, R. Al-Omari and Z. Duvnjak, “Prediction of Binary Sorption Isothems for the Sorption of Heavy Metals by Pine Bark Using Single Isotherm Data,” Chemosphere, Vol. 41, 2000, pp. 659-665. doi:10.1016/S0045-6535(99)00497-X
[22] T. Karthikeyan, S. Rajgopal and L. R. Miranda, “Chromium (VI) Adsorption from Aqueous Solution by Hevea Brasilinesis Sawdust Activated Carbon,” Journal of Hazardous Materials, Vol. B124, 2005, pp. 192-199. doi:10.1016/j.jhazmat.2005.05.003
[23] S. P. Mishra, D. Tiwari, R. S. Dubey and M. Mishra, “Biosorptive Behaviour of Casein for Zn2+, Hg2+ and Cr3+: Effect of Physico-Chemical Treatment,” Bioresource Technology, Vol. 63, 1998, pp. 1-5. doi:10.1016/S0960-8524(97)00110-7
[24] W. Zheng, X.-M. Li, F. Wang, Q. Yang, P. Deng and G.-M. Zeng, “Adsorption Removal of Cadmium and Copper from Aqueous Solution by Areca—A Food Waste,” Journal of Hazardous Materials, Vol. 157, No. 2-3, 2008, pp. 490-495. doi:10.1016/j.jhazmat.2008.01.029
[25] M. Mahramanlioglu, I. Kizilcikli and I. O. Bicer, “Adsorption of Fluoride from Aqueous Solution by Acid Treated Spent Bleaching Earth,” Journal of Fluorine Chemistry, Vol. 115, No. 1, 2002, pp. 41-47. doi:10.1016/S0022-1139(02)00003-9
[26] O. A. Wahab, “Kinetic and Isotherm Studies of Copper (II) Removal from Wastewater Using Various Adsorbents,” Egyptian Journal of Aquatic Research, Vol. 30, No. 1, 2007, pp. 125-143.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.