Demineralised Lignite Fly Ash for the Removal of Zn(II) Ions from Aqueous Solution

Abstract

Among the various possibilities of limiting the disposal of fly ashes (lignite), their reutilization as adsorbent materials is worthy of consideration. To this end, proper ashes beneficiation techniques can be put into practice. The adsorption of toxic compounds from industrial wastewater is an effective method for both treating these effluents and recycling lignite fly ash. The aim of this paper is to give a contribution for understanding the relationships among beneficiation treatments, adsorbent properties and adsorption mechanism and efficiency. In this context, the lignite fly ash was demineralised using concentrated HCl and HF (FA-DEM) and was used as adsorbent for Zn(II) ions from aqueous solutions. Batch experiments were carried out under various adsorbent dosages, pH, contact time and different metal ion concentrations. For FA-DEM, the 57.7% removal of Zn(II) ion was achieved under the optimum conditions of adsorbent dosages of 4 g/L, pH at 6, temperature at 303 K and the contact time of 1.15 h. The adsorption of Zn(II) ions onto FA-DEM followed the pseudo second order kinetics. The Langmuir isotherm model best represented the equilibrium data.

Share and Cite:

T. Malarvizhi and T. Santhi, "Demineralised Lignite Fly Ash for the Removal of Zn(II) Ions from Aqueous Solution," Journal of Water Resource and Protection, Vol. 5 No. 1, 2013, pp. 72-81. doi: 10.4236/jwarp.2013.51009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. St. De Luca, M. L. De B. Vivo, A. M. Lima and G. Grezzi, “Relationships between Heavy Metal Distribution and Cancer Mortality Rates in the Campania Region,” Environmental Geochemistry, 2008, pp. 391-403. doi:10.1016/B978-0-444-53159-9.00016-4
[2] P. Battistoni, G. Fava and L. M. Ruello, “Heavy Metal Shush Load in Activated Sludge Uptake and Toxic Effects,” Water Research, Vol. 27, No. 5, 1993, pp. 821-827. doi:10.1016/0043-1354(93)90146-9
[3] C. Guibal, C. Roulph and P. L. Cloirec, “Uranium Biosorption by a Filamentous Fungus Mucor miehei: pH Effect on Mechanisms and Performances of Uptake,” Water Research, Vol. 26, No. 8, 1992, pp. 1139-1145. doi:10.1016/0043-1354(92)90151-S
[4] E. Fourest and J. C. Roux, “Heavy Metal Biosorption by Fungal Mycelia By-Products: Mechanisms and Influence of pH,” Applied Microbiology and Biotechnology, Vol. 37, No. 3, 1992, pp. 399-403.
[5] H. A. Aziz, M. N. Adlan and K. S. Ariffin, “Heavy Metals (Cd, Pb, Zn, Ni, Cu and Cr(III) Removal from Water in Malaysia: Post Treatment by High Quality Limestone,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 1578-1583. doi:10.1016/j.biortech.2007.04.007
[6] V. K. Gupta and J. Ali, “Removal of Lead and Cr from Wastewater Using Bagasse Fly Ash: A Sugar Industry Waste,” Journal of Colloid and Interface Science, Vol. 271, No. 2, 2004, pp. 312-328. doi:10.1016/j.jcis.2003.11.007
[7] Y. N. Mata, M. L. Blazquez, A. Ballester, F. Gonzale and J. A. Munoz,“ Sugar Beet Pulp Pectin Gels Asbiosorbent for Heavy Metals: Preparation and Determination of Biosorption and Desorption Characteristics,” Chemical Engineering Journal, Vol. 150, No. 2-3, 2009, pp. 289-301. doi:10.1016/j.cej.2009.01.001
[8] D. Mohan and P. K. Singh, “Single and Multicomponent Adsorption of Cadmium and Zinc Using Activated Carbon Derived from Bagasse—An Agricultural Waste,” Water Research, Vol. 36, No. 9, 2002, pp. 2304-2318. doi:10.1016/S0043-1354(01)00447-X
[9] L. J. Yu, S. S. Shukla, K. L. Ca Dorris, B. Shukla and J. L. Margrave, “Adsorption of Chromium from Aqueous Solutions by Maple Saw Dust,” Journal of Hazardous Materials, Vol. 100, No. 1-3, 2003, pp. 53-63. doi:10.1016/S0304-3894(03)00008-6
[10] D. Ozdes, C. Duran and H. B. Senturk, “Adsorption Removal of Cd(II) and Pb(II) Ions from Aqueous Solutions by Using Turkish Illitic Clay,” Journal of Environmental Management, Vol. 92, No. 12, 2011, pp. 3082-3090. doi:10.1016/j.jenvman.2011.07.022
[11] L.-N. Shi, X. Zhang and Z.-L. Chen, “Removal of Cr(VI) from Wastewater Using Bentonite-Supported Nanoscale Zero-Valent Iron,” Water Research, Vol. 45, No. 2, 2011, pp. 886-892. doi:10.1016/j.watres.2010.09.025
[12] C. W. Cheung, J. F. Porter and G. Mckay, “Sorption Kinetic Analysis for the Removal of Cadmium Ions from Effluents Using Bone Char,” Water Research, Vol. 35, No. 3, 2001, pp. 605-612. doi:10.1016/S0043-1354(00)00306-7
[13] S. Wang, T. Terdkiatburana and M. O. Tadé, “Single and Co-Adsorption of Heavy Metals on Humic Acid,” Separation and Purification Technology, Vol. 58, No. 3, 2008, pp. 353-358. doi:10.1016/j.seppur.2007.05.009
[14] Y. S. Ho and G. McKay, “Sorption of Cu(II) from Aqueous Solution by Peat,” Water, Air, and Soil Pollution, Vol. 158, No. 1, 2004, pp. 77-97. doi:10.1023/B:WATE.0000044830.63767.a3
[15] J. Peric, M. Trgo and N. V. Medvidovic, “Removal of Zinc, Copper and Lead by Natural Zeolite—A Comparison of Adsorption Isotherms,” Water Research, Vol. 38, No. 7, 2004, pp. 1893-1899. doi:10.1016/j.watres.2003.12.035
[16] T. S. Malarvizhi and T. Santhi, “Lignite Fired Fly Ash Modified by Chemical Treatment for Adsorption of Zinc from Aqueous Solution,” Research on Chemical Intermediates, 2012, in Press. doi:10.1007/s11164-012-0774-8
[17] S. V. Mattigod, D. Rai, L. E. Eary and C. C. Ainsworth, “Geochemical Factors Controlling the Mobilizationof Inorganic Constituents from Fossil Fuel Combustion Residues I. Review of the Major Elements,” Journal of Environmental Quality, Vol. 19, No. 2, 1990, pp. 188-201. doi:10.2134/jeq1990.00472425001900020004x
[18] S. Jala and D. Goyal, “Fly Ash as a Soil Ameliorant for Improving Crop Production-Review,” Bioresource Technology, Vol. 97, No. 9, 2006, pp. 1136-1146. doi:10.1016/j.biortech.2004.09.004
[19] S. Wang, Y. Boyjoo, A. Choueib, E. Ng, H. Wu and Z. Zhu, “Role of Unburnt Carbon in Adsorption of Dyes on Fly Ash,” Journal of Chemical Technology and Biotechnology, Vol. 80, No. 10, 2005, pp. 1204-1209. doi:10.1002/jctb.1299
[20] S. Wang, M. Soudi, L. Li and Z. H. Zhu, “Coal Ash Conversion into Effective Adsorbents for Removal of Heavy Metals and Dyes from Wastewater,” Journal of Hazardous Materials, Vol. 133B, No. 1-3, 2006, pp. 243-251.
[21] H. Cho, D. Oh and K. Kim, “A Study on Removal Characteristics of Heavy Metals from Aqueous Solution by Fly Ash,” Journal of Hazardous Materials, Vol. 127, No. 1-3, 2005, pp. 187-195. doi:10.1016/j.jhazmat.2005.07.019
[22] I. Langmuir, “The Constitution and Fundamental Properties of Solids and Liquids,” Journal of the American Chemical Society, Vol. 38, No. 11, 1916, pp. 2221-2295. doi:10.1021/ja02268a002
[23] H. Freundlich, “Adsorption in Solution,” Zeitschrift für Physikalische Chemie, Vol. 57, 1906, pp. 384-470.
[24] M. I. Tempkin and V. Pyzhev, “Kinetics of Ammonia Synthesis on Promoted Iron Catalyst,” Acta Physica-Chimica Sinica, Vol. 12, 1940, pp. 327-356.
[25] M. M. Dubinin, “The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-Uniform Surface,” Chemical Reviews, Vol. 60, No. 2, 1960, pp. 235-266.
[26] M. M. Dubinin, “Modern State of the Theory of Volume Filling of Micropore Adsorbents during Adsorption of Gases and Steams on Carbon Adsorbents,” Zeitschrift für Physikalische Chemie, Vol. 39, 1965, pp. 1305-1317.
[27] L. V. Radushkevich, “Potential Theory of Sorption and Structure of Carbons,” Zhurnal Fizicheskoi Khimii, Vol. 23, 1949, pp. 1410-1420.
[28] S. Kundu and A. K. Gupta, “Investigation on the Adsorption Efficiency of Iron Oxide Coated Cement (IOCC) towards As (V)-Kinetics, Equilibrium and Thermodynamic Studies,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 273, No. 1-3, 2006, pp. 121-128. doi:10.1016/j.colsurfa.2005.08.014
[29] C. A. Basker, “Applicability of the Various Adsorption Models of Three Dyes Adsorption onto Activated Carbon Prepared Waste Apricot,” Journal of Hazardous Materials, Vol. 135B, 2006, pp. 232-241.
[30] J. Halsey, “Lattice Frequency Distribution,” Chemical Physics, Vol. 16, 1948, p. 931.
[31] M. M. Abou-Mesalam, “Sorption Kinetics of Copper, Zinc Nickel Ions on Silico-Aluminate Ion Exchanger,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 225, No. 1-3, 2003. pp. 85-94. doi:10.1016/S0927-7757(03)00191-2
[32] M. M. Davila-Jimenez, M. P. Elizalde-Gonzalez and A. A. Pelaez-Cid, “Adsorption Interaction between Natural Adsorbents and Textile Dyes in Aqueous Solution,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 254, No. 1-3, 2005, pp. 107-114. doi:10.1016/j.colsurfa.2004.11.022
[33] S. Ricordel, S. Taha, I. Cisse and G. Dorange, “Heavy Metals Removal by Adsorption onto Peanut Husks: Characterization, Kinetic Study and Modelling,” Separation and Purification Technology, Vol. 24, No. 3, 2001, pp. 65-73. doi:10.1016/S1383-5866(01)00139-3
[34] M. Nogami and M. Tomozawa, “An Analytic Model of the Material Removal Rate Is Proposed for Chemical Mechanical Planarization CMP,” Journal of the American Chemical Society, Vol. 148, No. 10, 2001, pp. G581-586.
[35] B. Bayat, “Comparative Study of Adsorption Properties of Turkish Fly Ashes. I. The Case of Ni(II), Cu(II) and Zn(II),” Journal of Hazardous Materials, Vol. B95, 2002, pp. 251-273.
[36] E. Pehlivan and G. Arslan, “Removal of Metal Ions Using Lignite in Aqueous Solution Low Cost Biosorbent,” Fuel Processing Technology, Vol. 88, No. 1, 2007, pp. 99-106. doi:10.1016/j.fuproc.2006.09.004
[37] Y. Qi, A. F. A. Hoadley, A. E. Chaffee and G. Garnier, “Characterization of Lignite as an Industrial Adsorbent,” Fuel, Vol. 90, No. 4, 2011, pp. 1567-1574. doi:10.1016/j.fuel.2011.01.015
[38] C. Lafferty and M. Hobday, “The Use of Low Rank Brown Coal as an Ion Exchange Material: 1. Basic Parameters and the Ion Exchange Mechanism,” Fuel, Vol. 69, No. 1, 1990, pp. 78-83. doi:10.1016/0016-2361(90)90261-N
[39] K. K. Panday, G. Prasad and V. N. Singh, “Copper(II) Removal from Aqueous Solutions by Fly Ash,” Water Research, Vol. 19, No. 7, 1985, pp. 869-873. doi:10.1016/0043-1354(85)90145-9
[40] B. Bayat, “Comparative Study of Adsorption Properties of Turkish Fly Ashes. II. The Case of Cr(VI) and Cd(II),” Journal of Hazardous Materials, Vol. B95, No. 3, 2002, pp. 275-290.
[41] V. K.Gupta, C. K. Jain, I. Ali, M. Sharma and V. K. Saini, “Removal of Cadmium and Nickel from Wastewater Using Bagasse Fly Ash—A Sugar Industry Waste,” Water Research, Vol. 37, No. 16, 2003, pp. 4038-4044. doi:10.1016/S0043-1354(03)00292-6
[42] V. K. Gupta, D. Mohan, S. Sharma and K. T. Park, “Removal of Chromium (VI) from Electroplating Industry Wastewater Using Bagasse Fly Ash—A Sugar Industry Waste Material,” Environmentalist, Vol. 19, No. 2, 1999, pp. 129-136. doi:10.1023/A:1006693017711
[43] M. Rao, A. V. Parwate and A. G. Bhole, “Removal of Cr(VI) and Ni(II) from Aqueous Solution Using Bagasse and Fly Ash,” Waste Management, Vol. 22, No. 7, 2002, pp. 821-830. doi:10.1016/S0956-053X(02)00011-9
[44] V. Héquet, P. Ricou, I. Lecuyer and P. Le Cloirec, “ Removal of Cu(II) and Zn(II) in Aqueous Solutions by Sorption onto Mixed Fly Ash,” Fuel, Vol. 80, No. 6, 2001, pp. 851-856. doi:10.1016/S0016-2361(00)00153-8
[45] V. K. Gupta and I. Ali, “Removal of Lead and Chromium from Wastewater Using Bagasse Fly Ash—A Sugar Industry Waste,” Journal of Colloid and Interface Science, Vol. 271, No. 2, 2004, pp. 321-328. doi:10.1016/j.jcis.2003.11.007
[46] S. E. Bailey, T. J. Olin, R. M. Bricka, D. D. Adrian, “A Review of Potentially Low-Cost Sorbents for Heavy Metals,” Water Research, Vol. 33, No. 11, 1999, pp. 2469-2479. doi:10.1016/S0043-1354(98)00475-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.