Improved Low-Temperature Aqueous Synthesis of ZnO Nanorods and Their Use in SERS Detection of 4-ABT and RDX

DOI: 10.4236/msa.2013.41005   PDF   HTML   XML   4,487 Downloads   6,839 Views   Citations


The growth-controlled synthesis of zinc oxide nanorods (ZnO NR) in the aqueous phase has been investigated. The rods were grown on ZnO films previously deposited onto Si(100) and indium tin oxide (ITO) substrates by RF magnetron sputtering. The formation of the rods took place in the presence of hexamethylenetetramine (HMT) as habit-control reagent. The grains in the base ZnO film acted as seeds that promoted the longitudinal growth of the oxide. As-synthesized base films and rods were characterized by X-ray diffraction, scanning electron microscopy (SEM), field emission SEM, optical absorption and photoluminescence spectroscopy techniques. Subsequently, a wet chemistry procedure was performed to achieve ZnO NR growth. This methodology was conducive to the formation of rods of a relatively narrow distribution of diameters (60 - 70 nm) with lengths in the 1 - 3 μm range. Photoluminescence spectra were characterized by a dominant near-band-edge (NBE) peak followed by a green luminescence (GL) broad band, indicative of higher oxygen vacancy concentration in the ZnO NR grown on ZnO/ITO in comparison with those grown on ZnO/Si(100). A UV process was used for coating the ZnO NR with gold (Au). Au coating on ZnO NR was used to evaluate the detection capability by SERS of different analytes such as: 4-aminobenzenethiol (4-ABT) and 1,3,5-trinitroperhydro-1,3,5- triazine (RDX) at low levels. A strong SERS Raman spectrum was observed for 4-ABT. A limit of detection (LOD) of 1 × 10-8M for 4-ABT was achieved corresponding to a minimum of 5.4 × 105molecules detected under the experimental conditions at excitation wavelength of 785 nm with a sensitivity of the ZnO NR in the range of 1.1 × 10-16g under the laser spot.

Share and Cite:

M. Balaguera-Gelves, O. Perales-Pérez, S. Singh, J. Jiménez, J. Aparicio-Bolaños and S. Hernández-Rivera, "Improved Low-Temperature Aqueous Synthesis of ZnO Nanorods and Their Use in SERS Detection of 4-ABT and RDX," Materials Sciences and Applications, Vol. 4 No. 1, 2013, pp. 29-38. doi: 10.4236/msa.2013.41005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] X. Hu, Y. Masuda, T. Ohji and K. Kato, “Control of Crystal Growth for ZnO Nanowhisker Films in Aqueous Solution,” Thin Solid Films, Vol. 518, No. 2, 2009, pp. 906-910. doi:10.1016/j.tsf.2009.07.114
[2] J. Liu, Z. Guo, F. Meng, Y. Jia, T. Luo, M. Li and J. Liu, “Novel Single-Crystalline Hierarchical Structured ZnO Nanorods Fabricated via a Wet-Chemical Route: Combined High Gas Sensing Performance with Enhanced Optical Properties,” Crystal Growth & Design, Vol. 9, No. 4, 2009, pp. 1716-1722. doi:10.1021/cg8006298
[3] M. Huang, M. Mao, H. Feick, Y. Yan, W. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, Vol. 292, No. 5523, 2001, pp. 1897-1899. doi:10.1126/science.1060367
[4] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch and G. Cantwell, “Neutral-Donor Bound-Exciton Complexes in ZnO Crystals,” Physical Review B, Vol. 57, No. 19, 1998, pp. 12151-12155.
[5] X. Wang, X. Kong, Y. Yu and H. Zhang, “Synthesis and Characterization of Water-Soluble and Bifunctional ZnO Au Nanocomposites,” The Journal of Physical Chemistry C, Vol. 111, No. 10, 2007, pp. 3836-3841. doi:10.1021/jp064118z
[6] J. L. Chen, L. Luo, Z. Chen, M. Zhang, J. A. Zapien, C. S. Lee and S. T. Lee, “ZnO/Au Composite Nanoarrays As Substrates for Surface-Enhanced Raman Scattering Detection,” The Journal of Physical Chemistry C, Vol. 114, No. 1, 2010, pp. 93-100. doi:10.1021/jp908423v
[7] A. Dev, S. A. Panda, S. Kar, S. Chakrabarti and S. Chau dhuri, “Surfactant-Assisted Route to Synthesize Well Aligned ZnO Nanorod Arrays on Sol-Gel-Derived ZnO Thin Films,” The Journal of Physical Chemistry B, Vol. 110, No. 29, 2006, pp. 14266-14272. doi:10.1021/jp062729l
[8] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Advanced Materials, Vol. 15, No. 5, 2003, pp. 353-389. doi:10.1002/adma.200390087
[9] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu and C. Liu, “Size Dependence of Gas Sensitivity of ZnO Nanorods,” The Journal of Physical Chemistry C, Vol. 111, No. 5, 2007, pp.1900-1903. doi:10.1021/jp065963k
[10] D. J. Park, D. C. Kim, J. Y. Lee and H. K. Cho, “Synthesis and Microstructural Characterization of the Growth Direction Controlled ZnO Nanorods Using a Buffer Layer,” Nanotechnology, Vol. 17, No. 20, 2006, pp. 5238-5243. doi:10.1088/0957-4484/17/20/032
[11] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. D. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Letter, Vol. 5, No. 7, 2005, pp. 1231-1236. doi:10.1021/nl050788p
[12] Y. C. Wang, I. C. Leu and M. H. Hon, “Preparation Andcharacterization of Nanosized Zno Arrays by Electrophoretic Deposition,” Journal of Crystal Growth, Vol. 237 239, Pt. 1, 2002, pp. 564-569. doi:10.1016/S0022-0248(01)01984-4
[13] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the Factors that Govern the Deposition and Morphology of Thin Films of ZnO from Aqueous Solution,” Journal of Materials Chemistry, Vol. 14, No. 16, 2004, pp. 2575-2591. doi:10.1039/b404784b
[14] R. C. Wang, L. H. Ying, C. H. Shu, L. Y. Feng and R. S. Huang, “Boundary Layer-Assisted Chemical Bath Deposition of Well-Aligned ZnO Rods on Si by a One-Step Method,” Applied Physics A, Vol. 96, No. 3, 2009, pp. 775-781. doi:10.1007/s00339-009-5271-6
[15] D. Byrne, E. McGlynn, K. Kumar, M. Biswas, M. O. Henry and G. Hughes, “A Study of Drop-Coated and Chemical Bath-Deposited Buffer Layers for Vapor Phase Deposition of Large Area, Aligned, Zinc Oxide Nanorod Arrays,” Crystal Growth & Design, Vol. 11, No. 12, 2011, p. 400.
[16] L. Vayssieres, et al., “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” The Journal of Physical Chemistry B, Vol. 105, No. 17, 2001, pp. 3350-3352. doi:10.1021/jp010026s
[17] J. S. Na, B. Gong, G. Scarel and G. N. Parsons, “Surface Polarity Shielding and Hierarchical ZnO Nano-Architectures Produced Using Sequential Hydrothermal Crystal Synthesis and Thin Film Atomic Layer Deposition,” ACS Nano, Vol. 10, No. 10, 2009, pp. 3191-3199. doi:10.1021/nn900702e
[18] C. D. Bojorge, Vl. R. Kent, E. Teliz, H. R. Cánepa, R. Henríquez, H. Gómez, R. E. Marotti and E. A. Dalchiele, “Zinc-Oxide Nanowires Electrochemically Grown onto Sol-Gel Spin-Coated Seed Layers,” Physica Status Solidi A, Vol. 208, No. 7, 2011, pp. 1662-1669. doi:10.1002/pssa.201026752
[19] D. Wan, F. Huang and Y. Wang, “Highly Surface-Textured ZnO: Al Films Fabricated by Controlling the Nucleation and Growth Separately for Solar Cell Applications,” ACS Applied Materials & Interfaces, Vol. 2, No. 7, 2010, pp. 2147-2152. doi:10.1021/am100416e
[20] L. Vayssieres, N. Beermann. S. E. Lindquist and A. Hag feldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials, Vol. 13, No. 2, 2001, pp. 233-235. doi:10.1021/cm001202x
[21] N. Palomera, M. Balaguera, S. K. Arya, S. P. Hernández, M. S. Tomar, J. E. Ramírez and S. P. Singh, “Zinc Oxide Nanorods Modified Indium Tin Oxide Surface for Amperometric Urea Biosensor,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 8, 2011, pp. 6683-6689. doi:10.1166/jnn.2011.4248
[22] Z. J. Wang, H. M. Zhang, L. G. Zhang and J. S. Yuan, “Structure and Strong Ultraviolet Emission Characterist Ics of Amorphous ZnO Films Grown by Electrophoretic Deposition,” Journal of Materials Research, Vol. 18, No. 1, 2003, pp.151-155. doi:10.1557/JMR.2003.0021
[23] X. Gao, X. Li and W .Yu, “Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc-Ethylenediamine Complex,” The Journal of Physical Chemistry B, Vol. 109, No. 3, 2005, pp. 1155-1161. doi:10.1021/jp046267s
[24] N. S. Pesika, K. J. Stebe and P. C. Searson, “Relationship between Absorbance Spectra and Particle Size Distributions of Quantum Sized Nanocrystals,” The Journal of Physical Chemistry B, Vol. 107, No. 38, 2003, pp. 10412 10415. doi:10.1021/jp0303218
[25] L. Yanhong, W. Dejun, Z. Qidong, Y. Min and Z. Qinglin, “A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Pho tovoltage Spectroscopy,” The Journal of Physical Chemistry B, Vol. 108, No. 10, 2004, pp. 3202-3206. doi:10.1021/jp037201k
[26] X. Liu, X. Wu, H. Cao and R. P. Chang, “Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma-Enhanced Chemical Vapor Deposition,” Journal of Applied Physics, Vol. 95, No. 6, 2004, pp. 3141-3147. doi:10.1063/1.1646440
[27] D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, N. Sathitsuksanoh, A. Cheng and Y. H. Tzeng, “Effects of Postgrowth Annealing Treatment on the Photoluminescence of Zinc Oxide Nanorods,” Journal of Applied Physics, Vol. 99, No. 11, 2006, pp. 113505 113509. doi:10.1063/1.2200593
[28] J. A. Aparicio and F. E. Fernandez, “The Effect of Growth Conditions and N-2/O-2 Ambient on LO-Phonon Replicas during Epitaxial Growth of ZnO on C-Sap phire,” Journal of Materials Science, Vol. 45, No. 22, 2010, pp. 6009-6017. doi:10.1007/s10853-010-4684-0
[29] C. Levy-Clément, “Semiconductor electrodes and photoelectrochemistry,” In: S. Licht, Ed., Encyclopedia of Electrochemistry, WILEY-VCH, Weinheim, 2002, p. 185.
[30] T. Y. Liu, H. C. Liao, Ch. Lin, S. H. Hu and S. Yuan, “Bio functional ZnO Nanorod Arrays Grown on Flexible Substrates,” Langmuir, Vol. 22, No. 13, 2006, pp. 5804-5809. doi:10.1021/la052363o
[31] G. Wang. H. Y. Park and R. J. Lipert, “Mixed Mono layers on Gold Nanoparticle Labels for Multiplexed Surface-Enhanced Raman Scattering Based Immunoassays,” Analytical Chemistry, Vol. 81, No. 23, 2009, pp. 9643 9650. doi:10.1021/ac901711f
[32] N. Nadagouda, G. Hoag, J. Collins and R. Varma, “Green Synthesis of Au Nanostructures at Room Temperature Using Biodegradable Plant Surfactants,” Crystal Growth & Design, Vol. 9, No. 11, 2009, pp. 4979-4983. doi:10.1021/cg9007685
[33] Z. Quing, L. Yang, Z. Tié, X. Weiping, Z. Meng and Y. Shu, “Controlled Synthesis and Biocompatibility of Water Soluble ZnO Nanorods/Au Nanocomposites with Tunable UV and Visible Emission Intensity,” The Journal of Physical Chemistry C, Vol. 112, No. 50, 2008, pp. 19872 19877. doi:10.1021/jp804547e
[34] K. Kim and J. K. Yoon, “Raman Scattering of 4-Amino benzenethiol Sandwiched between Ag/Au Nanoparticle and Macroscopically Smooth Au Substrate,” The Journal of Physical Chemistry B, Vol. 109, No. 44, 2005, pp. 20731-20736. doi:10.1021/jp052829b
[35] O. Primera-Pedrozo, “Synthesis and Surface Modification of Metallic Nanoparticles: Sensitivity, Influence of Shape, Concentration and Excitation Wavelength on Chemical Detection by SERS,” Ph.D. Thesis. University of Puerto Rico at Mayagüez, Puerto Rico, 2010.
[36] E. A. Mamdouh, “Surface Enhanced Raman Scattering of Aromatic Thiols Adsorbed on Nanostructured Gold Surfaces,” Central European Journal of Chemistry, Vol. 7, No. 3, 2009, pp. 446-453. doi:10.2478/s11532-009-0032-0
[37] A. Nahla, Hatab, E. Gyula, P. B. Hatzingerc and B. Gua, “Detection and Analysis of Cyclotrimethylenetrinitramine (RDX) in Environmental Samples by Surface-Enhanced Raman Spectroscopy,” Journal of Raman Spectroscopy, Vol. 41, No. 10, 2010, pp. 1131-1136.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.