Share This Article:

Conducting Polyaniline-Electrical Charge Transportation

Abstract Full-Text HTML XML Download Download as PDF (Size:1722KB) PP. 1-10
DOI: 10.4236/msa.2013.41001    6,931 Downloads   10,964 Views   Citations

ABSTRACT

Conductive polyanilines are synthesized by doping with inorganic and organic acids, namely Hydrochloric acid (HCl) and ±10-camphor sulfonic acid (CSA). The direct current (DC) conductivities (σDC) are found to be about 9.5 10-8, 1.8, and 95.8 S/cm for PANI base, PANI(HCl) and PANI(CSA), respectively. σDC is measured down to a temperature of ~100 K and the apparent change in the activation energies are found to be 98.16, 74.40, and 57.24 meV for PANI base, HCl, and CSA dopings respectively. σDC is less temperature dependent near room temperature, further decrease in temperature the σDC is strongly dependent. Upon the inspection of AC conductivities (σAC) versus frequency curves, it can be inferred that the conduction process is noticeably influenced upon doping and within the dopants. σAC has shown classical plateau (DC-AC crossover) region, nonetheless shifted crossover frequency (critical frequency) upon doping is rather interesting. Critical frequencies (wc) are obtained from universal power-law for all samples. The variation in the dielectric properties can be attributed to the dopant incorporation. In material characterization, successful doping is corroborated by FTIR, UV-vis spectroscopy and slight influence upon doping can also be seen in thermal properties. Intense photoluminescence (PL) peaks at 322.5, 581.4 and 644.2 nm are observed. PANI(CSA) exhibited highest peak intensity followed by PANI(HCl) and PANI base.


Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Babu, S. Vempati and S. Ramakrishna, "Conducting Polyaniline-Electrical Charge Transportation," Materials Sciences and Applications, Vol. 4 No. 1, 2013, pp. 1-10. doi: 10.4236/msa.2013.41001.

References

[1] R. Valaski, F. Muchenski, R. M. Q. Mello, L. Micaroni, L. S. Roman and I. A. Hümmelgen, “Sulfonated Polyaniline/poly(3-methylthiophene)-based Photovoltaic Devices,” Journal of Solid State Electrochemistry, Vol. 10, No. 1, 2006, pp. 24-27. doi:10.1007/s10008-005-0648-8
[2] K. F. Seidel, L. Rossi, R. M. Q. Mello and I. A. Hüm melgen, “Vertical Organic Field Effect Transistor Using Sulfonated Polyaniline/Aluminum Bilayer as Intermedia te Electrode,” Journal of Materials Science, 2012. doi:10.1007/s10854-012-0876-5
[3] M. Kandyla, C. Pandis, S. Chatzandroulis, P. Pissis and I. Zergioti, “Direct Laser Printing of Thin-Film Polyaniline Devices,” Applied Physics A, 2012. doi:10.1007/s00339-012-7127-8
[4] J. Bhadra and D. Sarkar, “Field Effect Transistor Fabricated from Polyaniline-Polyvinyl Alcohol Nanocomposite,” Indian Journal of Physics, Vol. 84, No. 6, 2010, pp. 693-697. doi:10.1007/s12648-010-0073-4
[5] L. Grigore and M. C. Petty, “Polyaniline Films Deposited by Anodic Polymerization: Properties and Applications to Chemical Sensing,” Journal of Materials Science, Vol. 14, No. 5-7, 2003, pp. 389-392. doi:10.1023/A:1023908903260
[6] Y. Cao, P. Smith and A. J. Heeger, “Counter-Ion Induced Processibility of Conducting Polyaniline and of Conducting Polyblends of Polyaniline in Bulk Polymers,” Synthetic Metals, Vol. 48, No. 1, 1992, pp. 91-97. doi:10.1016/0379-6779(92)90053-L
[7] N. Chandrakanthi and M. A. Careem, “Preparation and Characterization of Fully Oxidized Form of Polyaniline,” Polymer Bulletin, Vol. 45, No. 2, 2000, pp. 113-120. doi:10.1007/s002890070038
[8] Y. Cao, P. Smith and A. J. Heeger, “Counter-Ion Induced Processibility of Conducting Polyaniline,” Synthetic Metals, Vol. 57, No. 1, 1993, pp. 3514-3519. doi:10.1016/0379-6779(93)90468-C
[9] E. D. Brugnollo, L. G. Paterno, F. L. Leite, F. J. Fonseca, C. J. L. Constantino, P. A. Antunes and L. H. C. Mattoso, “Fabrication and Characterization of Chemical Sensors Made from Nanostructured Films of Poly(o-Ethoxya niline) Prepared with Different Doping Acids,” Thin Solid Films, Vol. 516, No. 10, 2008, pp. 3274-3281. doi:10.1016/j.tsf.2007.08.118
[10] A. Manzoli, C. Steffens, R. T. Paschoalin, A. A. Correa, W. F. Alves, F. L. Leite and P. S. P. Herrmann, “Low Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness,” Sensors, Vol. 11, No. 6, 2011, pp. 6425-6434. doi:10.3390/s110606425
[11] D. Chattopadhyay and B. M. Mandal, “Methyl Cellulose Stabilized Polyaniline Dispersions,” Langmuir, Vol. 12, No. 6, 1996, pp. 1585-1588. doi:10.1021/la950523y
[12] M. Angelopoulos, G. E. Asturias, S. P. Ermer, A. Ray, E. M. Scherr, A. G. Macdiarmid, M. Akhtar, Z. Kiss and A. J. Epstein, “Polyaniline: Solutions, Films and Oxidation State,” Molecular Crystals and Liquid Crystals Incorporating, Vol. 160, No. 1, 1988, pp. 151-163. doi:10.1080/15421408808083010
[13] R. S. Biscaro, M. C. Rezende and R. Faez, “Reactive Doping of PAni-CSA and Its Use in Microwave Absorbing Materials,” Polymers for Advanced Technologies, Vol. 20, No. 1, 2009, pp. 28-34. doi:10.1002/pat.1239
[14] V. J. Babu, D. V. B. Murthy, V. Subramanian, V. R. K. Murthy, T. S. Natarajan and S. Ramakrishna, “Microwave Hall Mobility and Electrical Properties of Electrospun Polymer Nanofibers,” Journal of Applied Physics, Vol. 109, No. 7, 2011, p. 74306. doi:10.1063/1.3556456
[15] V. J. Babu, K. K. Satheesh, D. C. Trivedi, V. R. K. Mur thy and T. S. Natarajan, “Electrical Properties of Elec trospun Fibers of PANI-PMMA Composites,” Journal of Engineered Fibers and Fabrics, Vol. 2, No. 2, 2007, pp. 25-31.
[16] V. J. Babu, S. Vempati, G. J. Subha, V. Kumari, T. S. Natarajan, A. S. Nair and S. Ramakrishna, “AC Conductivity Studies on PMMA-PANI (HCl) Nanocomposite Fibers Produced by Electrospinning,” Journal of Engineered Fibers and Fabrics, Vol. 6, No. 4, 2011, pp. 54-59.
[17] Deepshikha and T. Basu, “A Review on Synthesis and Characterization of Nanostructured Conducting Polymers (NSCP) and Application in Biosensors,” Analytical Lett. Vol. 44, No. 6, 2011, pp. 1126-1171. doi:10.1080/00032719.2010.511734
[18] D. Chao, J. Chen, X. Lu, L. Chen, W. Zhang and Y. Wei, “SEM Study of the Morphology of High Molecular Weight Polyaniline,” Synthetic Metals, Vol. 150, No. 1, 2005, pp. 47-51. doi:10.1016/j.synthmet.2005.01.010
[19] S. Saravanan, C. J. Mathai, M. R. Anantharaman, S. Ven katachalam and P. V. Prabhakaran, “Investigations on the Electrical and Structural Properties of Polyaniline Doped with Camphor Sulphonic Acid,” Journal of Physics and Chemistry of Solids, Vol. 67, No. 7, 2006, pp. 1496-1501. doi:10.1016/j.jpcs.2006.01.100
[20] S. Stafstr?m, J. L. Brédas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. Huang and A. G. MacDiarmid, “Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies,” Physical Review Letters, Vol. 59, No. 13, 1987, pp. 1464-1467. doi:10.1103/PhysRevLett.59.1464
[21] C. R. Martins, P. S. D. Freitas and M.-A. D. Paoli, “Physical and Conductive Properties of the Blend of Polyaniline/Dodecylbenzenesulphonic Acid with PSS,” Polymer Bulletin, Vol. 49, No. 5, 2003, pp. 379-386. doi:10.1007/s00289-002-0118-8
[22] H. Jianjun, D. Yuping, Z. Jia, J. Hui, L. Shunhua and L. Weiping, “γ-MnO2/Polyaniline Composites: Preparation, Characterization, and Applications in Microwave Absorption,” Physica B, Vol. 406, No. 10, 2011, pp. 1950-1955. doi:10.1016/j.physb.2011.02.063
[23] J. Y. Shimano and A. G. MacDiarmid, “Polyaniline, a Dynamic Block Copolymer: Key to Attaining Its Intrinsic Conductivity?” Synthetic Metals, Vol. 123, No. 2, 2001, pp. 251-262. doi:10.1016/S0379-6779(01)00293-4
[24] M. Wohlgenannt and Z. V. Vardeny, “Spin-dependent Exciton Formation Rates in π-Conjugated Materials,” Journal of Physics: Condensed Matter, Vol. 15, No. 3, 2003, pp. R83-R107. doi:10.1088/0953-8984/15/3/202
[25] F. Yan and G. Xue, “Synthesis and Characterization of Electrically Conducting Polyaniline in Water-Oil Microemulsion,” Journal of Materials Chemistry, Vol. 9, No. 12, 1999, pp. 3035-3039. doi:10.1039/a905146e
[26] S. A. Chen and H. T. Lee, “Polyaniline Plasticized with 1-Methyl-2-Pyrrolidone: Structure and Doping Behavior,” Macromolecules, Vol. 26, No. 13, 1993, pp. 3254 3261. doi:10.1021/ma00065a002
[27] H.-S. Xu, Z.-Y. Cheng, Q. M. Zhang, P.-C. Wang and A. G. Macdiarmid, “Conduction Behavior of Doped Polyaniline Films at High Current Density Regime,” Journal of Polymer Science Part B, Vol. 37, No. 20, 1999, pp. 2845-2850.
[28] J. Stejskal and R. G. Gilbert, “Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report),” Pure and Applied Chemistry, Vol. 74, No. 5, 2002, pp. 857-867. doi:10.1351/pac200274050857
[29] A. Kapil, M. Taunk and S. Chand, “Preparation and Charge Transport Studies of Chemically Synthesized Polyaniline,” Journal of Materials Science: Materials in Electronics, Vol. 21, No. 4, 2010, pp. 399-404. doi:10.1007/s10854-009-9931-2
[30] M. Ghosh, A. Barman, S. K. De and S. Chatterjee, “Low Temperatuere Electrical Conductivity of Polyaniline-Po lyvinyl Alcohol Blends,” Solid State Commun, Vol. 103, No. 11, 1997, pp. 629-633. doi:10.1016/S0038-1098(97)00236-6
[31] M. Reghu, C. O. Yoon, C. Y. Yang, D. Moses, P. Smith and A. J. Heeger, “Transport in Polyaniline Networks Near the Percolation Threshold,” Physical Review B, Vol. 50, No. 19, 1994, pp. 13931-13941. doi:10.1103/PhysRevB.50.13931
[32] W. H. Jang, J. W. Kim, H. J. Choi and M. S. Jhon, “Synthesis and Electrorheology of Camphorsulfonic Acid Doped Polyaniline Suspensions,” Colloid and Polymer Science, Vol. 279, No. 8, 2001, pp. 823-827. doi:10.1007/s003960100534
[33] F. Gervais, N. Petit, C. Popon and P. Buvat, “Doping Dependence of Infrared Conductivity of Camphor-Sulphonic-Acid-Doped Polyaniline,” European Physical Review B, Vol. 31, No. 1, 2003, pp. 47-52. doi:10.1140/epjb/e2003-00007-9
[34] N. F. Mot and E. Davis, “Electron Process in Non Crystalline Materials,” Clarendon, Oxford, 1979.
[35] K. Morii, H. Kawano, I. Fujii, T. Matsui and Y. Nakayama, “Dielectric Relaxation in Amorphous Thin Films of SrTiO3 at Elevated Temperatures,” Journal of Applied Physics, Vol. 78, No. 3, 1995, p. 1914. doi:10.1063/1.360228
[36] D. Adler, L. P. Flora and S. D. Senturia, “Electrical Conductivity in Disordered Systems,” Solid State Commun, Vol. 12, No. 1, 1973, pp. 9-12. doi:10.1016/0038-1098(73)90333-5
[37] P. Passiniemi and K. Vakiparta, “Characterization of Po lyaniline Blends with AC Impedance Measurements,” Synthetic Metals, Vol. 69, No. 1-3, 1995, pp. 237-238. doi:10.1016/0379-6779(94)02432-X
[38] R. F. Bianchi, G. F. L. Ferreira, C. M. Lepienski and R. M. Faria, “Alternating Electrical Conductivity of Polyaniline,” Journal of Chemical Physics, Vol. 110, No. 9, 1999, pp. 4602-4607. doi:10.1063/1.478341
[39] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth and W. J. Blau, “Ex perimental Observation of Scaling Laws for Alternating Current and Direct Current Conductivity in Polymer Carbon Nanotube Composite Thin Films,” Journal of Applied Physics, Vol. 92, No. 7, 2002, pp. 4024-4030. doi:10.1063/1.1506397
[40] J. C. Dyre and T. B. Schr?der, “Universality of Ac Conduction in Disordered Solids,” Reviews of Modern Physics, Vol. 72, No. 3, 2000, pp. 873-892. doi:10.1103/RevModPhys.72.873
[41] J. Bisquert and G. Garcia-Belmonte, “Interpretation of AC Conductivity of Lightly Doped Conducting Polymers in Terms of Hopping Conduction,” Russian Journal of Electrochemistry, Vol. 40, No. 3, 2004, pp. 352-358. doi:10.1023/B:RUEL.0000019676.99599.bc
[42] R. Singh, V. Arora, R. P. Tandon, S. Chandra and A. Man singh, “Charge Transport and Structural Morphology of HCl-Doped Polyaniline,” Journal of Materials Science, Vol. 33, No. 8, 1998, pp. 2067-2072. doi:10.1023/A:1004358800788
[43] M. G. Han and S. S. Im, “Dielectric Spectroscopy of Conductive Polyaniline Salt Films,” Journal of Applied Polymer Science, Vol. 82, No. 11, 2001, pp. 2760-2769. doi:10.1002/app.2129
[44] P. Dutta, S. Biswas and S. K. De, “Alternating-Current Conductivity and Dielectric Permittivity of Polyaniline Doped with β-Naphthalene Sulphonic Acid,” Journal of Physics: Condensed Matter, Vol. 13, No. 41, 2001, pp. 9187-9196. doi:10.1088/0953-8984/13/41/310

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.