Senescence and longevity in amniotic fluid derived cells


Amniotic fluid stem cells(AFSC) are noncontroversial and abundant potentially transplantable cells. They are derived from fetal and amniotic sources and show osteogenic, neuronal, and adipogenic differentiation in culture. Clinical material must be expanded in culture and sorted if clinical use is desired. Cellular senescence and replicative potential for AFSC cultures has had limited study, with scant data on gene expression over time. We report changes in samples from 17 patients over multiple passages form 10 to 81 population doublings. Longevity was unrelated to telomere length in these cells. It was related to upregulation of TWIST1, which is highly expressed in stem cells, and downregulation of genes associated with apoptosis.

Share and Cite:

Chen, Z. , Jadhav, A. , Wang, F. , Perle, M. , Basch, R. and K. Young, B. (2013) Senescence and longevity in amniotic fluid derived cells. Stem Cell Discovery, 3, 47-55. doi: 10.4236/scd.2013.31008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dobreva, M.P., Pereira, P.N., Deprest, J. and Zwijsen, A. (2010) On the origin of amniotic stem cells: Of mice and men. The International Journal of Developmental Biology, 54, 761-777. doi:10.1387/ijdb.092935md
[2] Zhang, J. and Ju, Z. (2010) Telomere, DNA damage, and oxidative stress in stem cell aging. Birth Defects Research. Part C, Embryo Today: Reviews, 90, 297-307.
[3] Beltrami, A.P., Cesselli, D. and Beltrami, C.A. (2012) Stem cell senescence and regenerative paradigms. Clinical Pharmacology and Therapeutics, 91, 21-29. doi:10.1038/clpt.2011.262
[4] Liu, L. and Rando, T.A. (2011) Manifestations and mechanisms of stem cell aging. The Journal of Cell Biology, 193, 257-266. doi:10.1083/jcb.201010131
[5] Allen, N.D. and Baird, D.M. (2009) Telomere length maintenance in stem cell populations. Biochimica et Biophysica Acta, 1792, 324-328. doi:10.1016/j.bbadis.2009.02.004
[6] Kim, Y.W., Kim, H.J., Bae, S.M., Kim, Y.J., Shin, J.C., Chun, H.J., Rhie, J.W., Kim, J., Kim, H. and Ahn, W.S. (2010) Time-course transcriptional profiling of human amniotic fluid-derived stem cells using microarray. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 42, 82-94.
[7] Cawthon, R.M. (2002) Telomere measurement by quantitative PCR. Nucleic Acids Research, 30, e47. doi:10.1093/nar/30.10.e47
[8] Gannon, H.S., Donehower, L.A., Lyle, S. and Jones, S.N. (2011) Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin. Developmental Biology, 353, 1-9. doi:10.1016/j.ydbio.2011.02.007
[9] Ksiazek, K. (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Research, 12, 105-116. doi:10.1089/rej.2009.0830
[10] Ho, J.H., Chen, Y.F., Ma, W.H., Tseng, T.C., Chen, M.H. and Lee, O.K. (2011) Cell contact accelerates replicative senescence of human mesenchymal stem cells independent of telomere shortening and p53 activation: Roles of Ras and oxidative stress. Cell Transplantation, 20, 1209-1220. doi:10.3727/096368910X546562
[11] Tsai, C.C., Chen, Y.J., Yew, T.L., Chen, L.L., Wang, J.Y., Chiu, C.H. and Hung, S.C. (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, 117, 459-469. doi:10.1182/blood-2010-05-287508
[12] Shao, L., Li, H., Pazhanisamy, S.K., Meng, A., Wang, Y. and Zhou, D. (2011) Reactive oxygen species and hematopoietic stem cell senescence. International Journal of Hematology, 94, 24-32. doi:10.1007/s12185-011-0872-1
[13] Kong, Y., Cui, H., Ramkumar, C. and Zhang, H. (2011) Regulation of senescence in cancer and aging. Journal of Aging Research, 2011, 963172. doi:10.4061/2011/963172
[14] Matsumoto, A., Takeishi, S., Kanie, T., Susaki, E., Onoyama, I., Tateishi, Y., Nakayama, K. and Nakayama, K.I. (2011) p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell, 9, 262-271. doi:10.1016/j.stem.2011.06.014
[15] Zou, P., Yoshihara, H., Hosokawa, K., Tai, I., Shinmyozu, K., Tsukahara, F., Maru, Y., Nakayama, K., Nakayama, K.I. and Suda, T. (2011) p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell, 9, 247-261. doi:10.1016/j.stem.2011.07.003
[16] Ullah, Z., Kohn, M.J., Yagi, R., Vassilev, L.T. and De-Pamphilis, M.L. (2008) Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes & Development, 22, 3024-3036. doi:10.1101/gad.1718108
[17] Menicanin, D., Bartold, P.M., Zannettino, A.C. and Gronthos, S. (2010) Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells and Development, 19, 1501-1510. doi:10.1089/scd.2009.0492
[18] Isenmann, S., Arthur, A., Zannettino, A.C., Turner, J.L., Shi, S., Glackin, C.A. and Gronthos, S. (2009) TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells, 27, 2457-2468. doi:10.1002/stem.181
[19] Yang, D.C., Yang, M.H., Tsai, C.C., Huang, T.F., Chen, Y.H. and Hung, S.C. (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PloS One, 6, e23965. doi:10.1371/journal.pone.0023965

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.