Facing a Shift in Paradigm at the Bedside?


Our entire medical framework is based on the concept of disease, understood as a qualitative departure from normality (health) with a structural substrate (lesion), and usually an identifiable cause (aetiology). This paradigm is loaded with problems, some of which are discussed in the text. Nevertheless, we study, diagnose and treat diseases, and while often painfully conscious of the dysfunctionalities of this scheme, we can hardly imagine how we could practice medicine otherwise. However, most of the recent developments in basic sciences, and most notably in Immunology, Genetics and -omics, are inconsistent with this “health/disease” paradigm. The emerging scenario is that of complex networks, more in the spirit of Systems Biology. In these settings the qualitative difference between health and disease loses its meaning, and the whole discourse becomes progressively irreducible to our conventional clinical categories. As clinical research stagnates while basic sciences thrive, this gap is widening, and a change in the prevailing paradigm seems unavoidable. However, all our clinical judgments (including Bayesian reasoning and Evidence Based Medicine) are rooted in the disease/health dichotomy, and one can hardly conceive how they could work without it. The shift in paradigm will not be easy, and certain turmoil is to be expected.

Share and Cite:

B. Vargas and M. Varela, "Facing a Shift in Paradigm at the Bedside?," International Journal of Clinical Medicine, Vol. 4 No. 1, 2013, pp. 35-40. doi: 10.4236/ijcm.2013.41008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. S. Kuhn and I. Hacking, “The Structure of Scientific Revolutions,” 50th Anniversary Edition, University of Chicago Press, Chicago, 2012.
[2] P. Lain Entralgo, “El Diagnóstico Médico. Historia Y teoría,” Salvat Editores SA, Barcelona, 1982.
[3] M. Foucault, “Naissance de la Clinique: Archéologie du Regard Médical,” Presses Universitaires de France, Paris, 1972.
[4] P. Nash, P. J. Mease, J. Braun and D. van der Heijde, “Seronegative Spondyloarthropathies: To Lump or Split?” Annals of the Rheumatic Diseases, Vol. 64, No. Supplement 2, 2005, pp. ii9-ii13. doi:10.1136/ard.2004.033654
[5] A. M. Silverstein, “A History of Immunology,” Academic Press, Waltham, 1989.
[6] E. S. Lander, L. M. Linton, B. Birren, et al., “Initial Sequencing and Analysis of the Human Genome,” Nature, Vol. 409, No. 6822, 2001, pp. 860-921. doi:10.1038/35057062
[7] B. R. Graveley, “Alternative Splicing: Increasing Diversity in the Proteomic World,” Trends in Genetics, Vol. 17, No. 2, 2001, pp. 100-107. doi:10.1016/S0168-9525(00)02176-4
[8] S. C. Parker, L. Hansen, H. O. Abaan, T. D. Tullius and E. H. Margulies, “Local DNA Topography Correlates with Functional Noncoding Regions of the Human Genome,” Science, Vol. 324, No. 5925, 2009, pp. 389-392. doi:10.1126/science.1169050
[9] M. Bizzarri, A. Giuliani, A. Cucina, F. D’Anselmi, A. M. Soto and C. Sonnenschein, “Fractal Analysis in a Systems Biology Approach to Cancer,” Seminars in Cancer Biology, Vol. 21, No. 3, pp. 175-182.
[10] S. Dinicola, F. D’Anselmi, A. Pasqualato, et al., “A Systems Biology Approach to Cancer: Fractals, Attractors, and Nonlinear Dynamics,” Omics, Vol. 15, No. 3, pp. 93-104. doi:10.1089/omi.2010.0091
[11] “Omes and Omics,” 2013. http://omics.org/index.php/Omes_and_Omics
[12] J. Quackenbush, “Microarray Analysis and Tumor Classification,” The New England Journal of Medicine, Vol. 354, No. 23, 2006, pp. 2463-2472. doi:10.1056/NEJMra042342
[13] C. M. Perou, T. Sorlie, M. B. Eisen, et al., “Molecular Portraits of Human Breast Tumours,” Nature, Vol. 406, No. 6797, 2000, pp. 747-752. doi:10.1038/35021093
[14] L. J. van’t Veer, H. Dai, M. J. van de Vijver, et al., “Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer,” Nature, Vol. 415, No. 6871, 2002, pp. 530-536. doi:10.1038/415530a
[15] A. A. Alizadeh, M. B. Eisen, R. E. Davis, et al., “Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling,” Nature, Vol. 403, No. 6769, 2000, pp. 503-511. doi:10.1038/35000501
[16] C. Kihara, T. Tsunoda, T. Tanaka, et al., “Prediction of Sensitivity of Esophageal Tumors to Adjuvant Chemotherapy by cDNA Microarray Analysis of Gene-Expression Profiles,” Cancer Research, Vol. 61, No. 17, 2001, pp. 6474-6479.
[17] K. Yanagisawa, Y. Shyr, B. J. Xu, et al., “Proteomic Patterns of Tumour Subsets in Non-Small-Cell Lung Cancer,” Lancet, Vol. 362, No. 9382, 2003, pp. 433-439. doi:10.1016/S0140-6736(03)14068-8
[18] G. Nicolis and I. Prigogine, “Exploring Complexity: An Introduction,” W.H. Freeman, New York, 1989.
[19] M. Varela R. Ruiz-Esteban and M. J. Mestre de Juan, “Chaos, Fractals, and Our Concept of Disease,” Perspectives in Biology and Medicine, Vol. 53, No. 4, 2010, pp. 584-595. doi:10.1353/pbm.2010.0003
[20] M. Drack and O. Wolkenhauer, “System Approaches of Weiss and Bertalanffy and Their Relevance for Systems Biology Today,” Seminars in Cancer Biology, Vol. 21, No. 3, 2011, pp. 150-155. doi:10.1016/j.semcancer.2011.05.001
[21] J. Tegner, R. Nilsson, V. B. Bajic, J. Bjorkegren and T. Ravasi, “Systems Biology of Innate Immunity,” Cellular Immunology, Vol. 244, No. 2, 2006, pp. 105-109. doi:10.1016/j.cellimm.2007.01.010
[22] C. Lenfant, “Shattuck Lecture—Clinical Research to Clinical Practice—Lost in Translation?” The New England Journal of Medicine, Vol. 349, No. 9, 2003, pp. 868-874. doi:10.1056/NEJMsa035507
[23] J. Loscalzo, I. Kohane and A. L. Barabasi, “Human Disease Classification in the Postgenomic Era: A Complex Systems Approach to Human Pathobiology,” Molecular Systems Biology, Vol. 3, No. 124, 2007. doi:10.1038/msb4100163
[24] D. Hanahan and R. A. Weinberg, “The Hallmarks of Cancer,” Cell, Vol. 100, No. 1, 2000, pp. 57-70. doi:10.1016/S0092-8674(00)81683-9
[25] D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell, Vol. 144, No. 5, 2011, pp. 646-674. doi:10.1016/j.cell.2011.02.013
[26] C. Auffray, Z. Chen and L. Hood, “Systems Medicine: The Future of Medical Genomics and Healthcare,” Genome Medicine, Vol. 1, No. 1, 2009, p. 2. doi:10.1186/gm2
[27] J. Garcia-Aymerich, F. P. Gomez, M. Benet, et al., “Identification and Prospective Validation of Clinically Relevant Chronic Obstructive Pulmonary Disease (COPD) Subtypes,” Thorax, Vol. 66, No. 5, 2011, pp. 430-437. doi:10.1136/thx.2010.154484
[28] K. I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal and A. L. Barabasi, “The Human Disease Network,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 21, 2007, pp. 8685- 8690. doi:10.1073/pnas.0701361104
[29] C. A. Hidalgo, N. Blumm, A. L. Barabasi and N. A. Christakis, “A Dynamic Network Approach for the Study of Human Phenotypes,” PLOS Computational Biology, Vol. 5, No. 4, 2009, p. e1000353. doi:10.1371/journal.pcbi.1000353
[30] E. Murphy, “Classification and Its Alternatives,” In: H. J. Engelhardt and S. B. T. Spicker, Eds., Clinical Judgment: A Critical Appraisal, D. Reidel Publishing Company, Dordrecht, 1979, pp. 59-87.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.