Children Cautious Strategy and Variable Maturation Time Window for Responding in a Visual Search Task


Present study evaluates the changes and developmental trajectories of the attentional serial visual search and pre-attentional parallel search (pop-out) in situations in which a fast response is required. The hypothesis of present study are 1) that pre-attentional selection mechanisms develop before than serial attentional processes; 2) in the most difficult tasks, children prefer to adopt a non-responding strategy to an impulsive response patters; and 3) in speeded difficult discrimination tasks young children arrives to the criteria of correct performance in a broad temporal window. The results showed an inverse relationship between the age and the RTs and the different type of errors. For the present set of stimuli which produces an overcrowded scene and required a fast response, the behavioural trend of normal children is to the non-response pattern rather than to impulsive incorrect responses pattern. It can be suggested that young normal children present a broad temporal window to obtain the perceptual, motor and/or cognitive skills needed for responding adequately in a fast speeded discrimination task.

Share and Cite:

Rojas-Benjumea, M. , Quintero-Gallego, E. , Zozaya, L. , Barriga-Paulino, C. & Gómez, C. (2013). Children Cautious Strategy and Variable Maturation Time Window for Responding in a Visual Search Task. Psychology, 4, 19-32. doi: 10.4236/psych.2013.41003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Adler, S.A., & Orprecio, J. (2006). The eyes have it: Visual pop-out in infants and adults. Developmental Science, 9, 189-206. doi:10.1111/j.1467-7687.2006.00479.x
[2] Baranov-Krylov, I. N., Kuznetsova, T. G., & Ratnikova, V. K. (2009). Attention parameters in visual search task in different age groups. Neuroscience and Behavioral Physiology, 39, 481-482. doi:10.1007/s11055-009-9153-3
[3] Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive Psychology, 22, 225-271. doi:10.1016/0010-0285(90)90017-X
[4] Day, M. C. (1978). Visual search by children: The effect of background variation and the use of visual cues. Journal of Experimental Child Psychology, 25, l-16. doi:10.1016/0022-0965(78)90034-6
[5] Dye, M., & Bavelier, D. (2010) Differential development of visual attention skills in school-age children. Vision Research, 50, 452-459. doi:10.1016/j.visres.2009.10.010
[6] Duncan, J., & Humphreys. G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458. doi:10.1037/0033-295X.96.3.433
[7] Forsman, R., (1967). Age differences in the effects of stimulus complexity and symmetrical form on choice reaction and visual search performance. Journal of Experimental Child Psychology, 5, 406-429. doi:10.1016/0022-0965(67)90068-9
[8] Gerhardstein, P., & Rovee-Collier, C. (2002). The development of visual search in infants and very young children. Journal of Experimental Child Psychology, 81, 194-215. doi:10.1006/jecp.2001.2649
[9] Hommel, B., Li, K. Z. H., & Li, S.-C. (2004). Visual search across the life span. Developmental Psychology, 40, 545-558. doi:10.1037/0012-1649.40.4.545
[10] Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a “preattentive” feature search task. Nature, 387, 805 807. doi:10.1038/42940
[11] Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3 to 12 years-old Finnish children. Developmental Neuropsychology, 20, 407-428. doi:10.1207/S15326942DN2001_6
[12] Lobaugh, N. J., Cole, S., & Rovet, J. F. (1998). Visual search for features and conjunctions in development. Canadian Journal of Experimental Psychology, 52, 201-211. doi:10.1037/h0087293
[13] Logan, G. D., & Cowan W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91, 295-327. doi:10.1037/0033-295X.91.3.295
[14] Luna, B., Garver, E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 1357-1375. doi:10.1111/j.1467-8624.2004.00745.x
[15] Mondloch, C. J., Geldart, S., Maurer, D., & de Schonen, S. (2003). Developmental changes in the processing of hierarchical shapes continue into adolescence. Journal of Experimental Child Psychology, 84, 20-40. doi:10.1016/S0022-0965(02)00161-3
[16] Plude, D. J., Enns, J. T., & Brodeur, D. (1994). The development of se lective attention: A life-span overview. Acta Psychologica, 86, 227 272. doi:10.1016/0001-6918(94)90004-3
[17] Rebok, G. W., Smith, C. B., Pascualvaca, D. M., Mirsky, A. F., Anthony, B. J., & Kellam, S. G. (1997). Developmental changes in attentional performance in urban children from eight to thirteen years. Child Neuropsychology, 3, 28-46. doi:10.1080/09297049708401366
[18] Ruskin, E. M., & Kaye, D. B. (1990). Developmental differences in visual precessing: Strategy versus structure. Journal of Experimental Child Psychology, 50, 1-24. doi:10.1016/0022-0965(90)90029-8
[19] Thompson, L. A., & Massaro, D. W. (1989) Before you see it, you see its parts: Evidence for feature encoding and integration in preschool children and adults. Cognitive Psychology, 21, 334-362. doi:10.1016/0010-0285(89)90012-1
[20] Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97-136. doi:10.1016/0010-0285(80)90005-5
[21] Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15-48. doi:10.1037/0033-295X.95.1.15
[22] Treisman, A. M. (1986). Properties, parts, and objects. In K. Boff, L. Kaufman, & J. Thomas (Eds.), Handbook of perception and human performance, Vol. 2, Wiley, pp. 1-70.
[23] Trick, L. M., & Enns, J. T. (1998). Lifespan changes in attention: The visual search task. Cognitive Development, 13, 369-386. doi:10.1016/S0885-2014(98)90016-8
[24] Van Essen, D. C., & Gallant, J. L. (1994) Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1-10. doi:10.1016/0896-6273(94)90455-3

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.