The False Paradigm of RUNX3 Function as Tumor Suppressor in Gastric Cancer


Gastric cancer (GC) is a major cause of cancer mortality. GC studies that aim to identify relevant oncogenes and tumor suppressor genes (TSGs) are essential for devising effective new therapies. A decade ago, RUNX3, a gene that resides on human chromosome 1p36.1, was claimed to be a major TSG in GC. Since then, hundreds of studies involving thousands of GC patients have attempted to verify and extend the RUNX3 TSG paradigm. However, RUNX3 is not recognized as TSG and not listed in the “Cancer Gene Census” website. To be a TSG that protects normal cells against malignancy, the gene must be expressed in the normal tissue from which the cancer arose and its loss or inactivation should contribute to cancer development. This review summarizes compelling body of evidence challenging the RUNX3-TSG paradigm. Studies show unequivocally that RUNX3 is not expressed in normal gastric epithelium and that it fails to fulfill all other premises of a TSG. RUNX3 mutations and 1p36 deletions are not frequent in GC and RUNX3 is not associated with familial GC or with increased risk of GC. Accordingly, Runx3-/- mice do not develop tumors. RUNX3 promoter methylation, which has been reported to be a frequent event in GC, is not relevant to its alleged TSG function, since the gene is already silent in normal gastric epithelium. In sharp contrast, overexpression of RUNX3 was found in several types of human cancers, including GC, and the 1p36.1 region is amplified in B-cell lymphoma. Thus, it is possible that RUNX3 actually promotes cancer development rather than being a TSG. The true targets for GC therapy are discussed below. Those are genes frequently lost or amplified in GC and are well known for their tumor suppressive or oncogenic activity, respectively.

Share and Cite:

J. Lotem, D. Levanon, V. Negreanu and Y. Groner, "The False Paradigm of RUNX3 Function as Tumor Suppressor in Gastric Cancer," Journal of Cancer Therapy, Vol. 4 No. 1A, 2013, pp. 16-25. doi: 10.4236/jct.2013.41A003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Brenner, D. Rothenbacher and V. Arndt, “Epidemiology of Stomach Cancer,” Methods in Molecular Biology, Vol. 472, 2009, pp. 467-477.
[2] H. H. Hartgrink, E. P. Jansen, N. C. van Grieken and C. J. van de Velde, “Gastric Cancer,” Lancet, Vol. 374, No. 9688, 2009, pp. 477-490. doi:10.1016/S0140-6736(09)60617-6
[3] S. Nagini, “Carcinoma of the Stomach: A Review of Epidemiology, Pathogenesis, Molecular Genetics and Chemoprevention,” World Journal of Gastrointestinal Oncology, Vol. 4, No. 7, 2012, pp. 156-169. doi:10.4251/wjgo.v4.i7.156
[4] M. Fukayama, “Epstein-Barr Virus and Gastric Carcinoma,” Pathology International, Vol. 60, No. 5, 2010, pp. 337-350. doi:10.1111/j.1440-1827.2010.02533.x
[5] N. Deng, L. K. Goh, H. Wang, et al., “A Comprehensive Survey of Genomic Alterations in Gastric Cancer Reveals Systematic Patterns of Molecular Exclusivity and CoOccurrence among Distinct Therapeutic Targets,” Gut, Vol. 61, No. 5, 2012, pp. 673-684. doi:10.1136/gutjnl-2011-301839
[6] B. Fan, S. Dachrut, H. Coral, et al., “Integration of DNA Copy Number Alterations and Transcriptional Expression Analysis in Human Gastric Cancer,” PLoS One, Vol. 7, No. 4, 2012, p. e29824. doi:10.1371/journal.pone.0029824
[7] C. Greenman, P. Stephens, R. Smith, et al., “Patterns of Somatic Mutation in Human Cancer Genomes,” Nature, Vol. 446, No. 7132, 2007, pp. 153-158. doi:10.1038/nature05610
[8] Z. J. Zang, I. Cutcutache, S. L. Poon, et al., “Exome Sequencing of Gastric Adenocarcinoma Identifies Recurrent Somatic Mutations in Cell Adhesion and Chromatin Remodeling Genes,” Nature Genetics, Vol. 44, No. 5, 2012, pp. 570-574. doi:10.1038/ng.2246
[9] C. Zhao and X. Bu, “Promoter Methylation of Tumor-ReLated Genes in Gastric Carcinogenesis,” Histology and Histopathology, Vol. 27, No. 10, 2012, pp. 1271-1282.
[10] Q. L. Li, K. Ito, C. Sakakura, et al., “Causal Relationship between the Loss of RUNX3 Expression and Gastric Cancer,” Cell, Vol. 109, No. 1, 2002, pp. 113-124. doi:10.1016/S0092-8674(02)00690-6
[11] M. M. Subramaniam, J. Y. Chan, K. G. Yeoh, et al., “Molecular Pathology of RUNX3 in Human Carcinogenesis,” Biochimica et Biophysica Acta, Vol. 1796, No. 2, 2009, pp. 315-331.
[12] D. Levanon, Y. Bernstein, V. Negreanu, et al., “Absence of Runx3 Expression in Normal Gastrointestinal Epitheium Calls into Question Its Tumour Suppressor Function,” EMBO Molecular Medicine, Vol. 3, No. 10, 2011, pp. 593-604. doi:10.1002/emmm.201100168
[13] D. Levanon and Y. Groner, “Structure and Regulated Expression of Mammalian RUNX Genes,” Oncogene, Vol. 23, No. 24, 2004, pp. 4211-4219. doi:10.1038/sj.onc.1207670
[14] D. Levanon, V. Negreanu, Y. Bernstein, et al., “AML1, AML2, and AML3, the Human Members of the Runt Domain Gene-Family: cDNA Structure, Expression, and Chromosomal Localization,” Genomics, Vol. 23, No. 2, 1994, pp. 425-432. doi:10.1006/geno.1994.1519
[15] K. B. Avraham, D. Levanon, V. Negreanu, et al., “Mapping of the Mouse Homolog of the Human Runt Domain Gene, AML2, to the Distal Region of Mouse Chromosome 4,” Genomics, Vol. 25, No. 2, 1995, pp. 603-605. doi:10.1016/0888-7543(95)80073-U
[16] C. Bangsow, N. Rubins, G. Glusman, Y. Bernstein, et al., “The RUNX3 Gene-Sequence, Structure and Regulated Expression,” Gene, Vol. 279, No. 2, 2001, pp. 221-232. doi:10.1016/S0378-1119(01)00760-0
[17] D. Levanon, O. Brenner, V. Negreanu, et al., “Spatial and Temporal Expression Pattern of Runx3 (Aml2) and Runx1 (Aml1) Indicates Non-Redundant Functions during Mouse Embryogenesis,” Mechanisms of Development, Vol. 109, No. 2, 2001, pp. 413-417. doi:10.1016/S0925-4773(01)00537-8
[18] D. Levanon, D. Bettoun, C. Harris-Cerruti, et al., “The Runx3 Transcription Factor Regulates Development and Survival of TrkC Dorsal Root Ganglia Neurons,” The EMBO Journal, Vol. 21, No. 13, 2002, pp. 3454-3463. doi:10.1093/emboj/cdf370
[19] K. Ito, K. I. Inoue, S. C. Bae and Y. Ito, “Runx3 Expression in Gastrointestinal Tract Epithelium: Resolving the Controversy,” Oncogene, Vol. 28, No. 10, 2009, pp. 1379-1384. doi:10.1038/onc.2008.496
[20] P. Soriano, “Generalized lacZ Expression with the ROSA26 Cre Reporter Strain,” Nature Genetics, Vol. 21, No. 1, 1999, pp. 70-71. doi:10.1038/5007
[21] S. Srinivas, T. Watanabe, C. S. Lin, et al., “Cre Reporter Strains Produced by Targeted Insertion of EYFP and ECFP into the ROSA26 Locus,” BMC Developmental Biology, Vol. 1, 2001, p. 4. doi:10.1186/1471-213X-1-4
[22] C. A. Yoshida, H. Yamamoto, T. Fujita, et al., “Runx2 and Runx3 Are Essential for Chondrocyte Maturation, and Runx2 Regulates Limb Growth through Induction of Indian Hedgehog,” Genes & Development, Vol. 18, No. 8, 2004, pp. 952-963. doi:10.1101/gad.1174704
[23] D. Normile, “Cancer Research. Dispute over Tumor Suppressor Gene Runx3 Boils over,” Science, Vol. 334, No. 6055, 2011, pp. 442-443. doi:10.1126/science.334.6055.442
[24] K. Ito, A. C. Lim, M. Salto-Tellez, et al., “RUNX3 Attenuates Beta-Catenin/T Cell Factors in Intestinal Tumorigenesis,” Cancer Cell, Vol. 14, No. 3, 2008, pp. 226-237. doi:10.1016/j.ccr.2008.08.004
[25] K. Ito, Q. Liu, M. Salto-Tellez, et al., “RUNX3, a Novel Tumor Suppressor, Is Frequently Inactivated in Gastric Cancer by Protein Mislocalization,” Cancer Research, Vol. 65, No. 17, 2005, pp. 7743-7750.
[26] R. Carvalho, A. N. Milne, M. Polak, et al., “Exclusion of RUNX3 as a Tumour-Suppressor Gene in Early-Onset Gastric Carcinomas,” Oncogene, Vol. 24, No. 56, 2005, pp. 8252-8258. doi:10.1038/sj.onc.1208963
[27] M. J. Friedrich, R. Rad, R. Langer, et al., “Lack of RUNX3 Regulation in Human Gastric Cancer,” The Journal of Pathology, Vol. 210, No. 2, 2006, pp. 141-146. doi:10.1002/path.2042
[28] M. Salto-Tellez, B. K. Peh, K. Ito, et al., “RUNX3 Pro-tein Is Overexpressed in Human Basal Cell Carcinomas,” Oncogene, Vol. 25, No. 58, 2006, pp. 7646-7649. doi:10.1038/sj.onc.1209739
[29] Y. Kudo, T. Tsunematsu and T. Takata, “Oncogenic Role of RUNX3 in Head and Neck Cancer,” Journal of Cellular Biochemistry, Vol. 112, No. 2, 2011, pp. 387-393. doi:10.1002/jcb.22967
[30] C. W. Lee, L. S. Chuang, S. Kimura, et al., “RUNX3 Functions as an Oncogene in Ovarian Cancer,” Gynecologic Oncology, Vol. 122, No. 2, 2011, pp. 410-417. doi:10.1016/j.ygyno.2011.04.044
[31] J. Li, J. Kleeff, A. Guweidhi, et al., “RUNX3 Expression in Primary and Metastatic Pancreatic Cancer,” Journal of Clinical Pathology, Vol. 57, No. 3, 2004, pp. 294-299. doi:10.1136/jcp.2003.013011
[32] G. Brady, H. J. Whiteman, L. C. Spender and P. J. Farrell, “Downregulation of RUNX1 by RUNX3 Requires the RUNX3 VWRPY Sequence and Is Essential for Epstein-Barr Virus-Driven B-Cell Proliferation,” Journal of Virology, Vol. 83, No. 13, 2009, pp. 6909-6916. doi:10.1128/JVI.00216-09
[33] M. Osaki, M. Moriyama, K. Adachi, et al., “Expression of RUNX3 Protein in Human Gastric Mucosa, Intestinal Metaplasia and Carcinoma,” European Journal of Clinical Investigation, Vol. 34, No. 9, 2004, pp. 605-612. doi:10.1111/j.1365-2362.2004.01401.x
[34] N. A. Bhowmick, E. G. Neilson and H. L. Moses, “Stromal Fibroblasts in Cancer Initiation and Progression,” Nature, Vol. 432, No. 7015, 2004, pp. 332-337. doi:10.1038/nature03096
[35] P. Katajisto, K. Vaahtomeri, N. Ekman, et al., “LKB1 Signaling in Mesenchymal Cells Required for Suppression of Gastrointestinal Polyposis,” Nature Genetics, Vol. 40, No. 4, 2008, pp. 455-459. doi:10.1038/ng.98
[36] B. G. Kim, C. Li, W. Qiao, et al., “Smad4 Signalling in T Cells Is Required for Suppression of Gastrointestinal Cancer,” Nature, Vol. 441, No. 7096, 2006, pp. 1015-1019. doi:10.1038/nature04846
[37] O. Brenner, D. Levanon, V. Negreanu, et al., “Loss of Runx3 Function in Leukocytes Is Associated with Spontaneously Developed Colitis and Gastric Mucosal Hyperplasia,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 45, 2004, pp. 16016-16021. doi:10.1073/pnas.0407180101
[38] O. Fainaru, E. Woolf, J. Lotem, et al., “Runx3 Regulates Mouse TGF-Beta-Mediated Dendritic Cell Function and Its Absence Results in Airway Inflammation,” The EMBO Journal, Vol. 23, No. 4, 2004, pp. 969-979. doi:10.1038/sj.emboj.7600085
[39] I. Taniuchi, M. Osato, T. Egawa, et al., “Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte Development,” Cell, Vol. 111, No. 5, 2002, pp. 621-633. doi:10.1016/S0092-8674(02)01111-X
[40] E. Woolf, C. Xiao, O. Fainaru, et al., “Runx3 and Runx1 Are Required for CD8 T Cell Development during Thymopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 13, 2003, pp. 7731-7736. doi:10.1073/pnas.1232420100
[41] A. H. Berger, A. G. Knudson and P. P. Pandolfi, “A Continuum Model for Tumour Suppression,” Nature, Vol. 476, No. 7359, 2011, pp. 163-169. doi:10.1038/nature10275
[42] N. Chun and J. M. Ford, “Genetic Testing by Cancer Site: Stomach,” The Cancer Journal, Vol. 18, No. 4, 2012, pp. 355-363. doi:10.1097/PPO.0b013e31826246dc
[43] G. Keller, H. Vogelsang, I. Becker, et al., “Germline Mutations of the E-Cadherin(CDH1) and TP53 Genes, rather than of RUNX3 and HPP1, Contribute to genetic Predisposition in German Gastric Cancer Patients,” Journal of Medical Genetics, Vol. 41, No. 6, 2004, p. e89. doi:10.1136/jmg.2003.015594
[44] D. Wu, Y. Tian, W. Gong, et al., “Genetic Variants in the Runt-Related Transcription Factor 3 Gene Contribute to Gastric Cancer Risk in a Chinese Population,” Cancer Science, Vol. 100, No. 9, 2009, pp. 1688-1694. doi:10.1111/j.1349-7006.2009.01229.x
[45] A. Hishida, K. Matsuo, Y. Goto, et al., “Significant Association of RUNX3 T/A Polymorphism at Intron 3 (rs760805) with the Risk of Gastric Atrophy in Helicobacter Pylori Seropositive Japanese,” Journal of Gastroenterology, Vol. 44, No. 12, 2009, pp. 1165-1171. doi:10.1007/s00535-009-0118-7
[46] C. Guo, F. Yao, K. Wu, et al., “Chromatin Immunoprecipitation and Association Study Revealed a Possible Role of Runt-Related Transcription Factor 3 in the Ulcerative Colitis of Chinese Population,” Clinical Immunology, Vol. 135, No. 3, 2010, pp. 483-489. doi:10.1016/j.clim.2010.01.004
[47] R. K. Weersma, L. Zhou, I. M. Nolte, et al., “Runt-Related Transcription Factor 3 Is Associated with Ulcerative Colitis and Shows Epistasis with Solute Carrier Family 22, Members 4 and 5,” Inflammatory Bowel Diseases, Vol. 14, No. 12, 2008, pp. 1615-1622. doi:10.1002/ibd.20610
[48] P. C. Dubois, G. Trynka, L. Franke, et al., “Multiple Common Variants for Celiac Disease Influencing Immune Gene Expression,” Nature Genetics, Vol. 42, No. 4, 2010, pp. 295-302. doi:10.1038/ng.543
[49] D. M. Evans, C. C. Spencer, J. J. Pointon, et al., “Interaction between ERAP1 and HLA-B27 in Ankylosing Spondylitis Implicates Peptide Handling in the Mechanism for HLA-B27 in Disease Susceptibility,” Nature Genetics, Vol. 43, No. 8, 2011, pp. 761-767. doi:10.1038/ng.873
[50] L. C. Tsoi, S. L. Spain, J. Knight, et al., “Identification of 15 New Psoriasis Susceptibility Loci Highlights the Role of Innate Immunity,” Nature Genetics, Vol. 44, No. 12, 2012, pp. 1341-1348. doi:10.1038/ng.2467
[51] M. Sugai, K. Aoki, M. Osato, et al., “Runx3 Is Required for Full Activation of Regulatory T Cells to Prevent Colitis-Associated Tumor Formation,” The Journal of Immunology, Vol. 186, No. 11, 2011, pp. 6515-6520. doi:10.4049/jimmunol.1001671
[52] Y. Shi, Z. Hu, C. Wu, et al., “A Genome-Wide Association Study Identifies New Susceptibility Loci for Non-Cardia Gastric Cancer at 3q13.31 and 5p13.1,” Nature Genetics, Vol. 43, No. 12, 2011, pp. 1215-1218. doi:10.1038/ng.978
[53] C. C. Abnet, N. D. Freedman, N. Hu, et al., “A Shared Susceptibility Locus in PLCE1 at 10q23 for Gastric Adenocarcinoma and Esophageal Squamous Cell Carcinoma,” Nature Genetics, Vol. 42, No. 9, 2010, pp. 764-767. doi:10.1038/ng.649
[54] H. Sakamoto, K. Yoshimura, N. Saeki, et al., “Genetic Variation in PSCA Is Associated with Susceptibility to Diffuse-Type Gastric Cancer,” Nature Genetics, Vol. 40, No. 6, 2008, pp. 730-740. doi:10.1038/ng.152
[55] L. D. Wang, F. Y. Zhou, X. M. Li, et al., “Genome-Wide Association Study of Esophageal Squamous Cell Carcinoma in Chinese Subjects Identifies Susceptibility Loci at PLCE1 and C20orf54,” Nature Genetics, Vol. 42, No. 9, 2010, pp. 759-763. doi:10.1038/ng.648
[56] Y. Tsukamoto, T. Uchida, S. Karnan, et al., “Genome-Wide Analysis of DNA Copy Number Alterations and Gene Expression in Gastric Cancer,” The Journal of Pathology, Vol. 216, No. 4, 2008, pp. 471-482. doi:10.1002/path.2424
[57] S. L. Hu, D. B. Huang, Y. B. Sun, et al., “Pathobiologic Implications of Methylation and Expression Status of Runx3 and CHFR Genes in Gastric Cancer,” Medical Oncology, Vol. 28, No. 2, 2011, pp. 447-454. doi:10.1007/s12032-010-9467-6
[58] G. Tamura, K. So, H. Miyoshi, et al., “Quantitative Assessment of Gene Methylation in Neoplastic and NonNeoplastic Gastric Epithelia Using Methylation-Specific DNA Microarray,” Pathology International, Vol. 59, No. 12, 2009, pp. 895-899. doi:10.1111/j.1440-1827.2009.02458.x
[59] H. J. Song, K. N. Shim, Y. H. Joo, et al., “Methylation of the Tumor Suppressor Gene RUNX3 in Human Gastric Carcinoma,” Gut and Liver, Vol. 2, No. 2, 2008, pp. 119-125. doi:10.5009/gnl.2008.2.2.119
[60] D. Sproul, C. Nestor, J. Culley, et al., “Transcriptionally Repressed Genes Become Aberrantly Methylated and Distinguish Tumors of Different Lineages in Breast Cancer,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, No. 11, 2011, pp. 4364-4369. doi:10.1073/pnas.1013224108
[61] E. N. Gal-Yam, G. Egger, L. Iniguez, et al., “Frequent Switching of Polycomb Repressive Marks and DNA Hypermethylation in the PC3 Prostate Cancer Cell Line,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 35, 2008, pp. 12979-12984. doi:10.1073/pnas.0806437105
[62] I. Keshet, Y. Schlesinger, S. Farkash, et al., “Evidence for an Instructive Mechanism of De Novo Methylation in Cancer Cells,” Nature Genetics, Vol. 38, No. 2, 2006, pp. 149-153. doi:10.1038/ng1719
[63] A. Bagchi and A. A. Mills, “The Quest for the 1p36 Tumor Suppressor,” Cancer Research, Vol. 68, No. 8, 2008, 2551-2556. doi:10.1158/0008-5472.CAN-07-2095
[64] A. Bagchi, C. Papazoglu, Y. Wu, et al., “CHD5 Is a Tumor Suppressor at Human 1p36,” Cell, Vol. 128, No. 3, 2007, pp. 459-475. doi:10.1016/j.cell.2006.11.052
[65] C. Preudhomme, D. Warot-Loze, C. Roumier, et al., “High Incidence of Biallelic Point Mutations in the Runt Domain of the AML1/PEBP2 Alpha B Gene in Mo Acute Myeloid Leukemia and in Myeloid Malignancies with Acquired Trisomy 21,” Blood, Vol. 96, No. 8, 2000, pp. 2862-2869.
[66] W. J. Song, M. G. Sullivan, R. D. Legare, et al., “Haploinsufficiency of CBFA2 Causes Familial Thrombocytopenia with Propensity to Develop Acute Myelogenous Leukaemia,” Nature Genetics, Vol. 23, No. 2, 1999, pp. 66-75. doi:10.1038/13793
[67] M. Osato, “Point Mutations in the RUNX1/AML1 Gene: Another Actor in RUNX Leukemia,” Oncogene, Vol. 23, No. 24, 2004, pp. 4284-4296. doi:10.1038/sj.onc.1207779
[68] C. Roumier, V. Eclache, M. Imbert, et al., “M0 AML, Clinical and Biologic Features of the Disease, Including AML1 Gene Mutations: A Report of 59 Cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH),” Blood, Vol. 101, No. 4, 2003, pp. 1277-1283. doi:10.1182/blood-2002-05-1474
[69] S. Schnittger, F. Dicker, W. Kern, et al., “RUNX1 Mutations Are Frequent in De Novo AML with Noncomplex Karyotype and Confer an Unfavorable Prognosis,” Blood, Vol. 117, No. 8, 2011, pp. 2348-2357. doi:10.1182/blood-2009-11-255976
[70] J. R. Downing, “The Core-Binding Factor Leukemias: Lessons Learned from Murine Models,” Current Opinion in Genetics & Development, Vol. 13, No. 1, 2003, pp. 48-54. doi:10.1016/S0959-437X(02)00018-7
[71] S. M. Hart and L. Foroni, “Core Binding Factor Genes and Human Leukemia,” Haematologica, Vol. 87, No. 12, 2002, pp. 1307-1323.
[72] J. D. Rowley, “The Role of Chromosome Translocations in Leukemogenesis,” Seminars in Hematology, Vol. 36, No. 4, 1999, pp. 59-72.
[73] S. Banerji, K. Cibulskis, C. Rangel-Escareno, et al., “Sequence Analysis of Mutations and Translocations across Breast Cancer Subtypes,” Nature, Vol. 486, No. 7403, 2012, pp. 405-409. doi:10.1038/nature11154
[74] R. J. Fijneman, R. A. Anderson, E. Richards, et al., “Runx1 Is a Tumor Suppressor Gene in the Mouse Gastrointestinal tract,” Cancer Science, Vol. 103, No. 3, 2012, pp. 593-599. doi:10.1111/j.1349-7006.2011.02189.x
[75] E. R. Cameron and J. C. Neil, “The Runx Genes: Lineage-Specific Oncogenes and Tumor Suppressors,” Oncogene, Vol. 23, No. 24, 2004, pp. 4308-4314. doi:10.1038/sj.onc.1207130
[76] C. S. Hoi, S. E. Lee, S. Y. Lu, et al., “Runx1 Directly Pro-Motes Proliferation of Hair Follicle Stem Cells and Epithelial Tumor Formation in Mouse Skin,” Molecular and Cellular Biology, Vol. 30, No. 10, 2010, pp. 2518-2536. doi:10.1128/MCB.01308-09
[77] C. J. Scheitz, T. S. Lee, D. J. McDermitt and T. Tumbar, “Defining a Tissue Stem Cell-Driven Runx1/Stat3 Signalling Axis in Epithelial Cancer,” The EMBO Journal, Vol. 31, No. 21, 2012, pp. 4124-4139 doi:10.1038/emboj.2012.270
[78] K. Blyth, F. Vaillant, A. Jenkins, et al., “Runx2 in Normal Tissues and Cancer Cells: A Developing Story,” Blood Cells, Molecules and Diseases, Vol. 45, No. 2, 2010, pp. 117-123. doi:10.1016/j.bcmd.2010.05.007
[79] K. Ito, “RUNX3 in Oncogenic and Anti-Oncogenic Signaling in Gastrointestinal Cancers,” Journal of Cellular Biochemistry, Vol. 112, No. 5, 2011, pp. 1243-1249. doi:10.1002/jcb.23047
[80] F. Kreisel, S. Kulkarni, R. T. Kerns, et al., “High Resolution Array Comparative Genomic Hybridization Identifies Copy Number Alterations in Diffuse Large B-Cell Lymphoma That Predict Response to Immuno-Chemotherapy,” Cancer Genetics, Vol. 204, No. 3, 2011, pp. 129-137. doi:10.1016/j.cancergen.2010.12.010
[81] K. Blyth, E. R. Cameron and J. C. Neil, “The RUNX Genes: Gain or Loss of Function in Cancer,” Nature Reviews Cancer, Vol. 5, No. 5, 2005, pp. 376-387. doi:10.1038/nrc1607
[82] E. R. Cameron, K. Blyth, L. Hanlon, et al., “The Runx Genes as Dominant Oncogenes,” Blood Cells, Molecules and Diseases, Vol. 30, No. 2, 2003, pp. 194-200. doi:10.1016/S1079-9796(03)00031-7
[83] L. S. Chuang and Y. Ito, “RUNX3 Is Multifunctional in Carcinogenesis of Multiple Solid Tumors,” Oncogene, Vol. 29, No. 18, 2010, pp. 2605-2615. doi:10.1038/onc.2010.88

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.