Sol-Gel Materials with Pesticide Delivery Properties

DOI: 10.4236/jep.2010.13036   PDF   HTML     5,293 Downloads   10,798 Views   Citations


Pesticides are widely used in agriculture, although they may create hazards both to humans and to the environment. In order to reduce the harmful effects of their administration, there has been made a great effort to find solutions. The porous sol-gel silica materials which are able to entrap different organic molecules represent new studied controlled release carriers. The aim of the present work was to prepare and characterize sol-gel composites based on trichlorfon as organophosphorous pesticide embedded in silica matrices generated from three different SiO2 sources: tetraethylorthosilicate (TEOS), colloidal silica (CS), and sodium silicate (SS). Similar samples to those containing only trichlorfon have also been synthesised, in which α-, β-, and γ-cyclodextrin have been included in order to study the possibility of improving the release of the pesticide from the silica matrices. The porous sol-gel silica materials generated from TEOS and CS are able to entrap the trichlorfon and ensure an efficient delivery of the pesticide. In the absence of cyclodextrins, better results are obtained in the case of TEOS precursor, compared to colloidal silica. The addition of cyclodextrins in order to improve the release of the pesticide from the silica matrices was successful only in the case of CS as SiO2 precursor. The best release of the pesticide was obtained with β-CD.

Share and Cite:

M. Raileanu, L. Todan, M. Crisan, A. Braileanu, A. Rusu, C. Bradu, A. Carpov and M. Zaharescu, "Sol-Gel Materials with Pesticide Delivery Properties," Journal of Environmental Protection, Vol. 1 No. 3, 2010, pp. 302-313. doi: 10.4236/jep.2010.13036.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Paliwal, M. Wales, T. Good, J. Grimsley, J. Wild and A. Simonian, “Fluorescence-Based Sensing of P-Nitroph- enol and P-Nitrophenyl Substituent Organophosphates,” Analytica Chimica Acta, Vol. 596, No. 1, 2007, pp. 9-15.
[2] M. G. Dantas Silva, A. Aquino, H. S. Dórea and S. Navickiene, “Simultaneous Determination of Eight Pesti- cide Residues in Coconut Using MSPD and GC/MS,” Talanta, Vol. 76, No. 3, 2008, pp. 680-684.
[3] B. Kuswandi, C. I. Fikriyah and A. A. Gani, “An Optical Fiber Biosensor for Chlorpyrifos Using a Single Sol-Gel Film Containing Acetylcholinesterase and Bromothymol Blue,” Talanta, Vol. 74, No. 4, 2008, pp. 613-618.
[4] M. Waibel, H. Schulze, N. Huber and T. T. Bachmann, “Screen-Printed Bienzymatic Sensor Based on Sol-Gel Immobilized Nippostrongylus Brasiliensis Acetylcolineste- rase and a Cytochrome P450 BM-3 (CYP102-A1) Mutant,” Biosensors and Bioelectronics, Vol. 21, 2006, pp. 1132-1140.
[5] K. S. Yao, D. Y. Wang, C. Y. Chang, et al., “Photocatalytic Disinfection of Phytopathogenic Bacteria by Dye- Sensitized TiO2 Thin Film Activated by Visible Light,” Surface & Coatings Technology, Vol. 202, No. 4-7, 2007, pp. 1329-1332.
[6] A. N. Ivanov, G. A. Evtugyn, R. E. Gyurcsányi, K. Tóth and H. C. Budnikov, “Comparative Investigation of Electro-Chemical Cholinesterase Biosensors for Pesticide Determination,” Analytica Chimica Acta, Vol. 404, No. 1, 2000, pp. 55-65.
[7] N. Fidalgo-Used, E. Blanco-González and A. Sanz-Medel, “Evaluation of Two Commercial Capillary Columns for the Enantioselective Gas Chromatographic Separation of Organophosphorous Pesticides,” Talanta, Vol. 70, No. 5, 2006, pp. 1057-1063.
[8] F. Sope?a, C. Maqueda and E. Morillo, “Controlled Release Formulations of Herbicides Based on Micro- Encapsulation,” Ciencia e Investigación Agrarian, Vol. 35, No. 1, 2009, pp. 27-42.
[9] A. T. Doherty, S. Ellard, E. M. Parry and J. M. Parry, “A Study of the Aneugenic Activity of Trichlorfon Detected by Centromere-Specific Probes in Human Lymphoblastoid Cell Lines,” Mutation Research, Vol. 372, No. 2, 1996, pp. 221-231.
[10] X. Hong, J. Qu, J. Chen, et al., “Effects of Trichlorfon on Progesterone Production in Cultured Human Granulosa- Lutein Cells,” Toxicology in vitro, Vol. 21, No. 5, 2007, pp. 912-918.
[11] X. Hong, J. Qu, Y. Wang, et al., “Study on the Mechanism of Trichlorfon-Induced Inhibition of Progesterone Synthesis in Mouse Leydig Tumor Cells (MLTC-1),” Toxicology, Vol. 234, No. 1-2, 2007, pp. 51-58.
[12] S. Cukurcam, F. Sun, I. Betzendahl, I. D. Adler and U. Eichenlaub-Ritter, “Trichlorfon Predisposes to Aneuploi- dy and Interferes with Spindle Formation in in vitro Maturing Mouse Oocytes,” Mutation Research, Vol. 564, No. 2, 2004, pp. 165-178.
[13] R. Ranaldi, G. Gambuti, U. Eichenlaub-Ritter and F. Pacchierotti, “Trichlorfon Effects on Mouse Oocytes Following in vivo Exposure,” Mutation Research, Vol. 651, No. 1-2, 2008, pp. 125-130.
[14] B. K. Catalgol, S. Ozden and B. Alpertunga, “Effects of Trichlorfon on Malondialdehyde and Antioxidant System in Human Erythrocytes,” Toxicology in vitro, Vol. 21, No. 8, 2007, pp. 1538-1544.
[15] A. Mehl, T. M. Schanke, A. Torvik and F. Fonnum, “The Effect of Trichlorfon and Methylazoxymethanol on the Development of Guinea Pig Cerebellum,” Toxicology and Applied Pharmacology, Vol. 219, No. 2-3, 2007, pp. 128- 135.
[16] N. M. Brito, S. Navickiene, L. Polese, E. F. G. Jardim, R. B. Abakerli and M. L. Ribeiro, “Determination of Pesticide Residues in Coconut Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Plus Thermionic Specific Detection and Solid-Phase Extraction and High-Performance Liquid Chromatography with Ultraviolet Detection,” Journal of Chromatography A, Vol. 957, No. 2, 2002, pp. 201-209.
[17] A. G. S. Prado and C. Airoldi, “The Toxic Effect on Soil Microbial Activity Caused by the Free or Immobilized Pesticide Diuron,” Thermochimica Acta, Vol. 394, No. 1-2, 2002, pp. 155-162.
[18] C. Blasco, G. Font and Y. Picó, “Comparison of Micro- Extraction Procedures to Determine Pesticides in Oranges by Liquid Chromatography-Mass Spectrometry,” Journal of Chromatography A, Vol. 970, No. 1-2, 2002, pp. 201- 212.
[19] D. K. Rodham, “Colloid and Interface Science in For- mulation Research for Crop Protection Products,” Current Opinion in Colloid and Interface Science, Vol. 5, No. 5-6, 2000, pp. 280-287.
[20] H. B?ttcher, C. Jagota, J. Trepte, K. H. Kallies and H. Haufe, “Sol-Gel Composite Films with Controlled Release of Biocides,” Journal of Controlled Release, Vol. 60, No. 1, 1999, pp. 57-65.
[21] M. Hussain, “Atoms in Agriculture: Nuclear Techniques in ‘Controlled Release’ Pesticide Research,” IAEA Bulletin, Vol. 31, No. 2, 1989, pp. 36-40.
[22] A. Khazaei, D. Soudbar, M. Sadri and H. Hosseini, “Synthesis and Characterization of Poly(biphenyl-2-yl p-styrenesulphonate) as Profungicide in Controlled Release Technique,” Journal of the Chinese Chemical Society, Vol. 54, No. 3, 2007, pp. 763-766.
[23] M. Y. Arica, M. Yi?ito?lu, M. Lale, F. N. K?k and V. Hasirci, “Controlled Release of Aldicarb from Carboxyme- thylcellulase Microcapsules,” Turkish Journal of Chemis- try, Vol. 21, No. 2, 1997, pp. 100-104.
[24] K. Y. Choi, K. S. Min, I. H. Park, K. S. Kim and T. Chang, “Microcapsulation of Pesticides by Interfacial Polymerization 1. Polyurethane Microcapsules Contain- ing Oilsoluble Drug,” Polymer (Korea), Vol. 14, No. 4, 1990, pp. 392-400.
[25] M. Y. El-Shoura, S. T. Badr, S. A. El-Khishen and M. M. Abu Elamayem, “Effect of Controlled Release Formula- tions of Carbofuran Soil Fertilizers and their Mixtures on Root-Knot Nematode on Tomato Plants,” Journal of King Saud University. Agricultural Sciences, Vol. 4, No. 1, 1992, pp. 69-77.
[26] H. Schmidt, “Chemistry of Material Preparation by the Sol-Gel Process,” Journal of Non-Crystalline Solids, Vol. 100, No. 1-3, 1988, pp. 51-64.
[27] J. D. Mackenzie, “Hybrid Organic-Inorganic Materials,” In: J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, Eds., Hybrid Organic-Inorganic Composites, ACS Symposium Series 585, Washington, D.C., 1998, pp. 226-236.
[28] J. Livage, F. Beteille, C. Roux, M. Chatry and P. David- son, “Sol-Gel Synthesis of Oxide Materials,” Acta Materialia, Vol. 46, No. 3, 1998, pp. 743-750.
[29] J. D. Wright and N. A. J. M. Sommerdijk, “The Chemis- try of Sol-Gel Silicates,” In: D. Phillips, P. O’Brien and S. Roberts, Eds., Advanced Chemistry Texts, OPA N.V., Gordon and Breach Science Publishers, New York, 2001, pp. 33-52.
[30] Y. A. Shchipunov and T. Y. Karpenko, “Hybrid Polysac- charide-Silica Nanocomposites Prepared by the Sol-Gel Technique,” Langmuir, Vol. 20, No. 10, 2004, pp. 3882- 3887.
[31] Y. A. Shchipunov, T. Y. Karpenko, I. Y. Bakunina, Y. V. Burtseva and T. N. Zvyagintseva, “A New Precursor for the Immobilization of Enzymes inside Sol-Gel Derived Hybrid Silica Nanocomposites Containing Polysaccha- rides,” Journal of Biochemical and Biophysical Methods, Vol. 58, No. 1, 2004, pp. 25-38.
[32] Y. A. Shchipunov, T. Y. Karpenko and A. V. Krekoten, “Hybrid Organic-Inorganic Nanocomposites Fabricated with a Novel Biocompatible Precursor Using Sol-Gel Processing,” Composite Interfaces, Vol. 11, No. 8-9, 2005, pp. 587-607.
[33] Y. A. Shchipunov, A. V. Krekoten, V. G. Kuryavyi and I. N. Topchieva, “Microporous Nanocomposite Material Synthesized by Sol-Gel Processing in the Presence of Cyclodextrins,” Colloid Journal, Vol. 67, No. 3, 2005, pp. 380-384.
[34] Y. A. Schipunov, “Entrapment of Biopolymers into Sol-Gel Derived Silica Nanocomposites,” In: E. Ruiz- Hitzky, K. Ariga and Y. M. Lvov, Eds., Bio-Inorganic Hybrid Nanomaterials, Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, pp. 75-112.
[35] M. R?ileanu, “The Use of Sol-Gel Method for Bio- materials Preparation,” Revue Roumaine de Chimie, Vol. 51, No. 10, 2006, pp. 941-962.
[36] C. Van Hooidonk and J. C. A. E. Breebaart-Hansen, “Model Studies for Enzyme Inhibition. Part IV. The Association of Some Alkyl Methylphosphonates with α- cyclodextrin in an Aqueous Medium,” Recueil, Vol. 91, 1972, pp. 958-964.
[37] E. M. Del Valle, “Cyclodextrins and their Uses: A Review,” Process Biochemistry, Vol. 39, No. 9, 2004, pp. 1033-1046.
[38] G. Petrovi?, B. S. Radovanovi? and O. Jovanovi?, “Cha- racterization of Pesticide-β-cyclodextrin Inclusion Complexes in Aqueous Solution,” Physics, Chemistry and Technology, Vol. 3, No. 2, 2005, pp. 151-155.
[39] A. R. Hedges, “Industrial Applications of Cyclodextrins,” Chemical Reviews, Vol. 98, No. 5, 1998, pp. 2035-2044.
[40] J. Szejtli, “Past, Present, and Future of Cyclodextrin Research,” Pure and Applied Chemistry, Vol. 76, No. 10, 2004, pp. 1825-1845.
[41] J. Orgoványi, L. P?ppl, K. H. Otta and G. A. Lovas, “Thermoanalytical Method for Studying the Guest Content in Cyclodextrin Inclusion Complexes,” Journal of Thermal Analysis and Calorimetry, Vol. 81, No. 2, 2005, pp. 261-266.
[42] Cs. Novák, Z. éhen, M. Fodor, L. Jicsinszky and J. Orgoványi, “Application of Combined Thermoanalytical Techniques in the Investigation of Cyclodextrin Inclusion Complexes,” Journal of Thermal Analysis and Calori- metry, Vol. 84, No. 3, 2006, pp. 693-701.
[43] G. Ioni??, R. Socoteanu and F. Savonea, “ATR/FTIR Study on Silica Prepared Using β-Cyclodextrine and Urea as Template,” Revue Roumaine de Chimie, Vol. 50, No. 1, 2005, pp. 71-77.
[44] J. M. Gavira, A. Hernanz and I. Bratu, “Dehydration of β-cyclodextrin. An IR ν(OH) Band Profile Analysis,” Vibrational Spectroscopy, Vol. 32, No. 2, 2003, pp. 137- 146.
[45] I. Bratu, S. Astilean, C. Ionesc, E. Indrea, J. P. Huvenne and P. Legrand, “FT-IR and X-ray Spectroscopic Investi- gations of Na-diclofenac-cyclodextrins Interactions,” Spe- ctrochim Acta A, Vol. 54, No. 1, 1998, pp. 191-196.
[46] A. Farca?, “Semiconducting Polymers with Rotaxane Architecture,” In: Scientific Anales of the Al.I. Cuza Uni- versity, Volume XLV.XI.VI, Physics of the Condensed State, 1999-2000, pp. 217-223.
[47] J. Szejtli, “Types, Formation and Structures of Inclusion Complexes,” In: J. Szejtli, Cyclodextrins and their Inclusion Complexes, Akadémiai Kiadó, Budapest, 1982, pp. 94-143.
[48] A. Bertoluzza, M. Rossi, P. Taddei, E. Redenti, M. Zanol and P. Ventura, “FT-Raman and FT-IR Studies of 1:2.5 Piroxicam: β-cyclodextrin Inclusion Compound,” Journal of Molecular Structure, Vol. 480-481, 1999, pp. 535-539.
[49] E. Bilensoy, M. A. Rouf, I. Vural, M. Sen and A. A. Hincal, “Mucoadhesive, Thermosensitive, Prolonged- Release Vaginal Gel for Clotrimazole: β-cyclodextrin Complex,” AAPS PharmSciTech, Vol. 7, No. 2, 2006, pp. E54-E60.
[50] F. Taneri, T. Güneri, Z. Aigner, O. Berkesi and M. Kata, “Thermoanalytical Studies on Complexes of Clotrimazole with Cyclodextrins,” Journal of Thermal Analysis and Calorimetry, Vol. 76, No. 2, 2004, pp. 471-479.
[51] L. P. Fernandes, Zs. éhen, T. F. Moura, Cs. Novák and J. Sztatisz, “Characterization of Lippia sidoides Oil Extract-β-cyclodextrin Complexes Using Combined Thermoanalytical Techniques,” Journal of Thermal Analysis and Calorimetry, Vol. 78, No. 2, 2004, pp. 557-573.
[52] J.-H. Li, N. Zhang, X.-T. Li, J.-Y. Wang and S.-J. Tian, “Kinetic Studies on the Thermal Dissociation of the Inclusion Complex of β-cyclodextrin with Cinnamic Aldehide,” Journal of Thermal Analysis and Calorimetry, Vol. 49, No. 3, 1997, pp. 1527-1533.
[53] G. Bettinetti, Cs. Novák and M. Sorrenti, “Thermal and Structural Characterization of Commercial α-, β-, and γ-cyclodextrins,” Journal of Thermal Analysis and Calorimetry, Vol. 68, No. 2, 2002, pp. 517-529.
[54] J. M. Ginés, M. J. Arias, C. Novák, P. J. Sánchez-Soto, A. Ruiz-Conde and E. Morillo, “Thermal Study of Complex Formation of Triamterene with β-cyclodextrin by Spray- Drying and Co-Grinding,” Journal of Thermal Analysis and Calorimetry, Vol. 45, No. 4, 1995, pp. 659-666.
[55] C. Molina, P. Grasso, E. Benfenati and D. Barceló, “Auto- mated Sample Preparation with Extraction Columns Fol- lowed by Liquid Chromatography-Ionspray Mass Spec- trometry. Interferences, Determination and Degradation of Polar Organophosphorous Pesticides in Water Samples,” Journal of Chromatography A, Vol. 737, No. 1, 1996, pp. 47-58.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.