Phase-Matching and Parametric Conversion for the Mid-Infrared in As2S3 Waveguides

Abstract

We illustrate two As2S3 waveguide designs for four-wave mixing, which can generate 3.03 μm mid-infrared light from a 1.55 μm near-infrared signal source and a 2.05 μm pump source. Through simulations, we verify that four-wave mixing phase-matching efficiencies up to 100% can be achieved using dispersion engineering to maintain the dispersion at 2.05 μm near to zero. The best conversion efficiency is –10 dB. When the waveguide length is 1 cm, the parametric conversion bandwidth is 1525 nm. We also evaluated the shift of 100% phase-matching efficiency wavelengths based upon fabrication tolerances.

Share and Cite:

Q. Chen, X. Wang and C. Madsen, "Phase-Matching and Parametric Conversion for the Mid-Infrared in As2S3 Waveguides," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 260-264. doi: 10.4236/opj.2012.24031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Tittel, D. Richter and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” Solid-State Mid-Infrared Laser Sources, 2003, pp. 458-529
[2] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson and A. L. Gaeta, “Broad-Band Optical Parametric Gain on a Silicon Photonic Chip,” Nature, Vol. 441, No. 7096, 2006, pp. 960-963. doi:10.1038/nature04932
[3] Q. Lin, J. D. Zhang, P. M. Fauchet and G. P. Agrawal, “Ultrabroadband Parametric Generation and Wavelength Conversion in Silicon Waveguides,” Optics Express, Vol. 14, No. 11, 2006, pp. 4786-4799. doi:10.1364/OE.14.004786
[4] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping and A. L. Gaeta, “Tailored Anomalous Group-Velocity Dispersion in Silicon Channel Waveguides,” Optics Express, Vol. 14, No. 10, 2006, pp. 4357-4362. doi:10.1364/OE.14.004357
[5] D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-Matching and Nonlinear Optical Processes in Silicon Waveguides,” Optics Express, Vol. 12, No. 1, 2004, pp. 149-160. http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-1-149 doi:10.1364/OPEX.12.000149
[6] V. Raghunathan, R. Claps, D. Dimitropoulos and B. Jalali, “Parametric Raman Wavelength Conversion in Scaled Silicon Waveguides,” Journal of Lightwave Technology, Vol. 23, No. 6, 2005, pp. 2094-2102. doi:10.1109/JLT.2005.849895
[7] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi and S. Itabashi, “Four-Wave Mixing in Silicon Wire Waveguides,” Optics Express, Vol. 13, No. 12, 2005, pp. 4629-4637. http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4629 doi:10.1364/OPEX.13.004629
[8] K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji and S. Itabashi, “All-Optical Efficient Wavelength Conversion Using Silicon Photonic Wire Waveguide,” IEEE Photonics Technology Letters, Vol. 18, No. 9, 2006, pp. 1046-1048. doi:10.1109/LPT.2006.873469
[9] M. A. Foster, A. C. Turner, R. Salem, M. Lipson and A. L. Gaeta, “Broad-Band Continuous-Wave Parametric Wavelength Conversion in Silicon Nanowaveguides,” Optics Express, Vol. 15, No. 20, 2007, 12949-12958. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12949 doi:10.1364/OE.15.012949
[10] S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea and S. Radic, “Mid-Infrared Wavelength Conversion in Silicon Waveguides Using Ultracompact Telecom-Band-Derived Pump Source,” Nature Photonics, Vol. 4, No. 8, 2010, pp. 561-564. doi:10.1038/nphoton.2010.117
[11] X. Liu, R. M. Osgood Jr, Y. A. Vlasov and W. M. J. Green, “Mid-Infrared Optical Parametric Amplifier Using Silicon Nanophotonic Waveguides,” Nature Photonics, Vol. 4, No. 8, 2010, pp. 557-560. doi:10.1038/nphoton.2010.119
[12] R. Ahmad and M. Rochette, “Chalcogenide Optical Parametric Oscillator,” Optics Express, Vol. 20, No. 9, 2012, pp. 10095-10099. doi:10.1364/OE.20.010095
[13] R. Ahmad and M. Rochette, “High Efficiency and Ultra Broadband Optical Parametric Four-Wave Mixing in Chalcogenide-PMMA Hybrid Microwires,” Optics Express, Vol. 20, No. 9, 2012, pp. 9572-9580. doi:10.1364/OE.20.009572
[14] D. Yeom, E. M?gi, M. Lamont, M. Roelens, L. Fu and B. Eggleton, “Low-Threshold Supercontinuum Generation in Highly Nonlinear Chalcogenide Nanowires,” Optics Letters, Vol. 33, No. 7, 2008, pp. 660-662. doi:10.1364/OL.33.000660
[15] M. Asobe, “Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching,” Optical Fiber Technology, Vol. 3, No. 2, 1997, pp. 142-148. doi:10.1006/ofte.1997.0214
[16] A. Bohren and M. W. Sigrist, “Optical Parametric Oscillator Based Difference Frequency Laser Source for Photoacoustic Trace Gas Spectroscopy in the 3-μm midIR Range,” Infrared Physics & Technology, Vol. 38, No. 7, 1997, pp. 423-435. doi:10.1016/S1350-4495(97)00041-8
[17] G. P. Agrawal, “Nonlinear Fiber Optics,” Academic Press, San Diego, 2001, Chapter 10.
[18] T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude and J. Leuthold, “Optical Properties of Highly Nonlinear Silicon-Organic Hybrid (SOH) Waveguide Geometries,” Optics Express, Vol. 17, No. 20, 2009, pp. 17357-17368. doi:10.1364/OE.17.017357
[19] X. Xia, Q. Chen, C. Tsay, C. B. Arnold and C. K. Madsen “Low-Loss Chalcogenide Waveguides on Lithium Niobate for The Mid-Infrared,” Optics Letters, Vol. 35, No. 19, 2010, pp. 3228-3230. doi:10.1364/OL.35.003228
[20] J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 3, 2002, pp. 506-520. doi:10.1109/JSTQE.2002.1016354
[21] E.-K. Tien, Y. W. Huang, S. M. Gao, Q. Song, F. Qian, S. K. Kalyoncu and O. Boyraz, “Discrete Parametric Band Conversion in Silicon for Mid-Infrared Applications,” Optics Express, Vol. 18, No. 21, 2010, pp. 21981-21989. doi:10.1364/OE.18.021981
[22] M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai and B. J. Eggleton, “Net-Gain from a Parametric Amplifier on a Chalcogenide Optical Chip,” Optics Express, Vol. 16, No. 25, 2008, pp. 20374-20381. doi:10.1364/OE.16.020374
[23] W. C. Tan, Q. Chen, J. H. Kim and C. Madsen, “A Hybrid As2S3 Mach-Zehnder Interferometer Prepared by Magnetron Sputtering and Its Photodarkening Effect,” IEEE Journal of Quantum Electronics, Vol. 48, No. 2, 2011, pp. 237-243.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.