Economic route to sodium-containing silicate bioactive glass scaffold

DOI: 10.4236/ojrm.2012.13006   PDF   HTML     4,825 Downloads   8,752 Views   Citations


Tetraethyl orthosilicate (TEOS) and trimethyl orthosilicate (TMOS) alkoxysilanes are expensive common precursors for silicate based solgel derived bioactive glasses. Facile approa- ches involving low cost substitutes are a necessity for bioactive glass implants in bone regeneration therapy. Quaternary SiO2–Na2O–CaO– P2O5 bioactive glass was prepared by the solgel method from locally sourced sand as precursor. The monolith glass material obtained was subjected to immersion studies in simulated body fluid (SBF) for 21 days. The surface morphology and composition of the glass before and after immersion in SBF was studied using SEM-EDX, while pH analysis was used to monitor changes on the glass surface in SBF solution. FTIR was used to confirm apatite formation on the material. Results showed that the concentration of Ca, P and C increased on the surface of the glass sample as immersion time increased, which was attributed to the formation of carbonated hydroxyapatite (HCA). The material shows ability to bond to bone making it a promising scaffold material for bone repair.

Share and Cite:

Essien, E., Adams, L., Shaibu, R., Olasupo, I. and Oki, A. (2012) Economic route to sodium-containing silicate bioactive glass scaffold. Open Journal of Regenerative Medicine, 1, 33-40. doi: 10.4236/ojrm.2012.13006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hench, L.L. (1991) Bioceramics, from concept to clinic. Journal of American Ceramic Society, 74, 1487-1510. doi:10.1111/j.1151-2916.1991.tb07132.x
[2] Hench, L.L. and LaTorre, G.P. (1993) The reaction kine- tics of bioactive ceramics. Part IV. Effect of glass and so- lution composition. In: Yamamuro, Kokubo and Nakamura, Eds., Bioceramics, Kobunshi Kankokai Press, Kyo- to, 67-74.
[3] Best, S.M., Porter, A.E., Thian, E.S. and Huang, J. (2008) Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28, 1319-1327. doi:10.1016/j.jeurceramsoc.2007.12.001
[4] Gerhardt, L.C. and Boccaccini, A.R. (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engi- neering. Materials, 3, 3867-3910. doi:10.3390/ma3073867
[5] Peitl, O., Zanotto, E.D. and Hench L.L. (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 292, 115-126. doi:10.1016/S0022-3093(01)00822-5
[6] Chen, Q., Thompson, I.D. and Boccaccini, A.R. (2006) 45S5 Bioglass?-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 27, 2414-2425. doi:10.1016/j.biomaterials.2005.11.025
[7] Bahniuk, M.S., Pirayesh, H., Singh, H.D., Nychka, J.A. and Unsworth, L.D. (2012) Bioactive glass 45S5 powders: Effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plas- ma. Biointerphases, 7, 41. doi:10.1007/s13758-012-0041-y
[8] Chen, Q.Z. and Boccaccini, A.R. (2006) Coupling me- chanical competence and bioresorbability in Bioglass?- derived tissue engineering scaffolds. Advanced Engi- neering Materials, 8, 285-289. doi:10.1002/adem.200500259
[9] Hench, L.L. (1998) Bioceramics. Journal of American Ceramic Society, 81, 1705-1728. doi:10.1111/j.1151-2916.1998.tb02540.x
[10] Jones, J.R., Gentleman, E. and Polak, J. (2007) Bioactive scaffolds for bone regeneration. Elements, 3, 393-399. doi:10.2113/GSELEMENTS.3.6.393
[11] Vallet-Regí, M., Rangel, V.R., and Salinas, A.J. (2003) The in vitro bioactivity of mesoporous bioactive bioactive glasses. European Journal of Inorganic Chemistry, 6, 1029-1042. doi:10.1002/ejic.200390134
[12] Nayak, J.P. and Bera, J. (2010) Effect of sintering tem- perature on mechanical behaviour and bioactivity of sol- gel synthesized bioglass-ceramics using rice husk ash as a silica source. Applied Surface Science, 257, 458-462. doi:10.1016/j.apsusc.2010.07.011
[13] Crisan, M., Raileanu, M., Preda, S., Zaharescu, M., Valean, A.M., Popovici, E.J., Teodorescu, V.S., Matejec, V. and Mrazek, J. (2006) Manganese doped sol-gel mate- rials with catalytic properties. Journal of Optoelectronics and Advanced Materials, 8, 815-819.
[14] Li, Z., Hou B., Xu, Y., Wu, D., Sun, Y., Hu, W. and Deng, F. (2005) Comparative study of sol-gel hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles. Journal of Solid State Chemistry, 178, 1395-1405. doi:10.1016/j.jssc.2004.12.034
[15] Pabon, E., Retuert, J., Quijada, R. and Zarate, A. (2004) TiO2-SiO2 mixed oxides prepared by a combined sol-gel and polymer inclusion method. Microporous Materials, 67, 195-203. doi:10.1016/j.micromeso.2003.10.017
[16] Nayak, J.P., Kumar, S. and Bera, J. (2010) Sol-gel syn- thesis of bioglass-ceramics using rice husk ash as a source for silica and it characterization. Journal of Non- Crystalline Solids, 356, 1447-1451. doi:10.1016/j.jnoncrysol.2010.04.041
[17] Chen, Q.-Z., Yuan, L.Y., Jin, L.-Y., Quinn, J.M.W. and Komesaroff, P.A. (2010) A new sol-gel process for pro- ducing Na2O-containing bioactive glass ceramics. Acta Biomaterialia, 6, 4143-4153. doi:10.1016/j.actbio.2010.04.022
[18] Hench, L.L. and Wilson, J. (1984) Surface-active bioma- terials. Science, 226, 630-636. doi:10.1126/science.6093253
[19] Kokubo, T. and Takadama, H. (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, 2907-2915. doi:10.1016/j.biomaterials.2006.01.017
[20] Siqueira, R.L., Peitl, O. and Zanotto, E.D. (2011) Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity. Materials Science and Engineering C, 31, 983-991. doi:10.1016/j.msec.2011.02.018
[21] Rezwan, K., Chen, Q.Z., Blaker, J.J. and Boccaccini, A.R. (2006) Biodegradable and bioactive porouspolymer/in- organic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413-3431. doi:10.1016/j.biomaterials.2006.01.039
[22] Cao, W. and Hench, L.L. (1996) Bioactive materials. Ce- ramics International, 22, 493-507. doi:10.1016/0272-8842(95)00126-3
[23] Hench, L.L., Splinter, R.J., Allen, W.C. and Greenlee Jr, T.K. (1971) Bonding mechanisms at the interface of ce- ramic prosthetic materials. Journal of Biomedical Mate- rials Research, 2, 117-141. doi:10.1002/jbm.820050611
[24] Kokubo, T., Kim, H.-M. and Kawashita, M. (2003) Novel bioactive materials with different mechanical properties. Biomaterials, 24, 2161-2175. doi:10.1016/S0142-9612(03)00044-9
[25] Li, P., de Groot, K. and Kokubo, T. (1996) Bioactive Ca10(PO4)6(OH)2–TiO2 composite coating prepared by sol-gel. Journal of Sol-Gel Science and Technology, 7, 27-33. doi:10.1007/BF00401880
[26] Chen, Q.-Z. and Thouas, G.A. (2011) Fabrication and characterization of sol-gel derived 45S5 Bioglass?-ce- ramic scaffolds. Acta Biomaterialia, 7, 3616-3626. doi:10.1016/j.actbio.2011.06.005
[27] Kokubo, T., Ito, S., Huang, T., Hayashi, T., Sakka, S., Kitsugi, T., et al. (1990) Ca, P-rich layer formed on high strength bioactive glass-ceramic A-W. Journal of Bio- medical Materials Research, 24, 331-343. doi:10.1002/jbm.820240306
[28] Vallet-Regí, M., Pérez-Pariente, M., Izquierdo-Barba, I. and Salinas, A. (2000) Compositional variations in the calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chemical Materials, 12, 3770- 3775. doi:10.1021/cm001068g
[29] Oliveira, J.M., Correia, R.N. and Fernandes, M.H. (2002) Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials, 23, 371-379. doi:10.1016/S0142-9612(01)00115-6
[30] Hench, L.L. and West, J.K. (1996) Biological applications of bioactive glasses. Life Chemistry Reports, 13, 187-241.
[31] Lin, K., Chang, J., Liu, Z., Zeng, Y. and Shen, R. (2009) Fabrication and characterization of 45S5 bioglass rein- forced macroporous calcium silicate bioceramics. Journal of the European Ceramic Society, 29, 2937-2943. doi:10.1016/j.jeurceramsoc.2009.04.025
[32] Zhong, J.P., La Torre G.P., et al. (1994) The kinetics of bioactive ceramics part VII: Binding of collagen to hy- droxyapatite and bioactive glass. Bioceramics, 7, 61-66.
[33] Peitl, O., Zanotto, E.D. and Hench, L.L. (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 292, 115-126. doi:10.1016/S0022-3093(01)00822-5
[34] Lefebvre, L., Chevalier, J., Gremillard, L., Zenati, R., Thollet, G., Bernache-Assolant, D. and Govin, A. (2007) Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia, 55, 3305-3315. doi:10.1016/j.actamat.2007.01.029
[35] Mami, M., Lucas-Girot, A., Oudadesse, H., Dorbez-Sridi, R., Mezahi, F. and Dietrich, E. (2008) Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO2–CaO–P2O5. Applied Surface Science, 254, 7386-7393. doi:10.1016/j.apsusc.2008.05.340

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.