Share This Article:

A Simple Detection System for Two Classical Sagnac Interferometer Configurations

Abstract Full-Text HTML XML Download Download as PDF (Size:659KB) PP. 903-907
DOI: 10.4236/eng.2012.412114    4,548 Downloads   6,278 Views   Citations

ABSTRACT

Two interferometric systems were built, one in bulk optics and other one in fiber optics for showing the instrumentation stage designed for these devices, supported in a photodetector. This stage has a circuit for amplification, analog filtering and software for single channel data acquisition and digital filtering. Based on the Sagnac effect in bulk optics and in fiber optics, the Sagnac interferometer has many applications, nevertheless the methods of construction, design and instrumentation for the sensors used on both types of interferometers are well-known, but very common or general form, for this reason this work approaches some of the methodologies for the design and construction of these devices, obtaining higher sensitivity and better contribution in its respective interferometric paths. We used the simplest design for each interferometer, proposing the best detection limit for each one; to obtain the previous thing, we implement the three previous steps: amplifiers and analogous filters, software for filtering the digital sign. The data acquisition method used to allow us to obtain faster results, using the card of a PC, getting real time measurements and digital processing of the signal.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Sandoval-Romero and E. Pinzón-Escobar, "A Simple Detection System for Two Classical Sagnac Interferometer Configurations," Engineering, Vol. 4 No. 12, 2012, pp. 903-907. doi: 10.4236/eng.2012.412114.

References

[1] G. Sagnac, “L’éther lumineux démontré par l′effet du vent relatif d′éther dans un interféromètre en rotation uniforme,” Comptes rendus de l′Académie des Sciences, Vol. 95, 1913, pp. 708-710.
[2] G. Sagnac, “Sur la prevue de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant,” Comptes rendus de l′Académie des Sciences, Vol. 95, 1913, pp. 1410-1413.
[3] A. H. Rosenthal, “Regenerative Circulatory MultipleBeam Interferometry for the Study of Light-Propagation Effects,” Journal of the Optical Society of America, Vol. 52, No. 10, 1962, pp. 1143-1148. doi:10.1364/JOSA.52.001143
[4] C. V. Heer, “Optical Maser Photon Rate Gyroscope,” 1964 Symposium on Unconventional Inertial Sensors, Long Island, 19-20 October 1964.
[5] W. M. Macek and D. T. M. Davis Jr., “Rotation Rate Sensing with Traveling-Wave Ring Lasers,” Applied Physics Letters, Vol. 2, No. 3, 1963, pp. 67-68. doi:10.1063/1.1753778
[6] P. K. Cheo and C. V. Heer, “Beat Frequency between Two Traveling Waves in a Fabry-Perot Square Cavity,” Applied Optics, Vol. 3, No. 6, 1964, pp. 788-789. doi:10.1364/AO.3.000788
[7] C. V. Heer, “Resonant Frequencies of an Electromagnetic Cavity in an Accelerated System of Reference,” Physical Review, Vol. 134, No. 4A, 1964, pp. A799-A804. doi:10.1103/PhysRev.134.A799
[8] G. B. Malykin, “Earlier Studies of the Sagnac Effect,” physics Uspekhi, Vol. 40, No. 3, 1997, p. 317. doi:10.1070/PU1997v040n03ABEH000218
[9] T. J. Hutchings, et al., “Amplitude and Frequency Characteristics of a Ring Laser,” Physical Review, Vol. 152, No. 1, 1966, pp. 467-473. doi:10.1103/PhysRev.152.467
[10] J. M. Catherin and B. Dessus, “Traveling-Wave Laser Gyrocompass,” IEEE Journal of Quantum Electronics, Vol. QE-3, No. 11, 1967, pp. 449-453. doi:10.1109/JQE.1967.1074408
[11] V. Vali and R. W. Shorthill, “Fiber Ring Interferometer,” Applied Optics, Vol. 15, No. 5, 1976, pp. 1099-1100. doi:10.1364/AO.15.001099
[12] O. Pottiez, et al., “Easily Adjustable, Power-Symmetric Nonlinear Optical Loop Mirror for Ultrafast Photonic Applications,” Symposium IEEE/LEOS Benelux Chapter, Ghent, 2004.
[13] S. W. Lloyd, et al., “Measurement of Reduced Backscattering Noise in Laser-Driven Fiber Optic Gyroscopes,” Optics Letters, Vol. 35, No. 2, 2010, pp. 121-123. doi:10.1364/OL.35.000121
[14] C. Zhang, et al., “Thermal Analysis of the Effects of Thermally Induced Nonreciprocity in Fiber Optic Gyroscope Sensing Coils,” Optik, Vol. 122, No. 1, 2011, pp. 20-23. doi:10.1016/j.ijleo.2009.10.004
[15] B. Culshaw, “The Optical Fibre Sagnac Interferometer: An Overview of Its Principles and Applications,” Measurement Science and Technology, Vol. 17, No. 1, 2006, pp. R1-R17. doi:10.1088/0957-0233/17/1/R01
[16] L. R. Jaroszewicz, “Fiber-Optic Sagnac Interferometer as Real Sensor of the Physical Quantities,” Proceedings of the Symposium on Photonics Technologies for 7th Framework Program, Wroclaw, 12-14 October 2006, pp. 99-102.
[17] S. Palma-Vargas, G. E. Sandoval-Romero and A. Ramirez-Ibarra, “Detection Limit of a Sagnac’s Interferometer,” SPIE Proceedings of Sixth Symposium Optics in Industry, Monterrey, 8-9 March 2007. doi:10.1117/12.742278
[18] G. E. Sandoval-Romero, “Fiber Optic Gyrocompass Superluminescent Fiber Source,” IEEE A&E Magazine, 2005, pp. 19-20. doi:10.1109/MAES.2005.1499247
[19] M. Komachiya, H. Sonobe, S. Oho, K. Ohbu, T. Yuhara and H. Iizuka, “Secondary-Phase-Modulation Method for Open-Loop Fiber-Optic Gyroscopes,” Applied Optics, Vol. 35, No. 19, 1996, pp. 3719-3725. doi:10.1364/AO.35.003719
[20] S. Palma-Vargas, G. E. Sandoval-Romero and A. Ramirez-Ibarra, “Optical Angular Movement Sensor,” SPIE Proceedings of Photonics North, Québec, 5-8 June 2006, p. 634329. doi:10.1117/12.707966
[21] L. R. Jaroszewicz and Z. Krajewski, “Application of the Fibre-Optic Rotational Seismometer in Investigation of the Seismic Rotational Waves,” Opto-Electronics Review, Vol. 16, No. 3, 2008, pp. 314-320. doi:10.2478/s11772-008-0015-2
[22] G. Bertocchi, et al., “Single-Photon Sagnac Interferometer,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 39, No. 5, 2006, pp. 1011-1016. doi:10.1088/0953-4075/39/5/001

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.