Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress


Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.

Share and Cite:

Sripathi, S. , He, W. , Um, J. , Moser, T. , Dehnbostel, S. , Kindt, K. , Goldman, J. , Frost, M. and Jahng, W. (2012) Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress. Advances in Bioscience and Biotechnology, 3, 1167-1178. doi: 10.4236/abb.2012.38143.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Noell, W.K., Walker, V.S., Kang, B.S. and Berman, S. (1966) Retinal damage by light in rats. Investigative Ophthalmology, 5, 450-473.
[2] Adrian, W., Everson, R.W. and Schmidt, I. (1977) Protection against photic damage in retinitis pigmentosa. Advances in Experimental Medicine and Biology, 77, 233-247.
[3] Young, R.W. (1988) Solar radiation and age-related macular degeneration. Survey of Ophthalmology, 32, 252-269. doi:10.1016/0039-6257(88)90174-9
[4] Grimm, C., Wenzel, A., Hafezi, F., Yu, S., Redmond, T.M. and Reme, C.E. (2000) Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration. Nature Genetics, 25, 63-66. doi:10.1038/75614
[5] Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., Bauer, C., Gassmann, M. and Reme, C.E. (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nature Medicine, 8, 718-724. doi:10.1038/nm723
[6] Chung, H., Lee, L., Lamoke, F., Hrushesky, W.J.M., Wood, P.A. and Jahng, W.J. (2009) Neuroprotective role of erythropoietin by antiapoptosis in the retina. Journal of Neuroscience Research, 87, 2365-2374. doi:10.1002/jnr.22046
[7] Lee, H., Chung, H., Arnouk, H., Lamoke, F., Hunt, R.C., Hrushesky, W.J.M., Wood, P.A., Lee, S.H. and Jahng, W.J. (2010) Cleavage of the retinal pigment epithelium-specific protein RPE65 under oxidative stress. International Journal of Biological Macromolecules, 47, 104-108. doi:10.1016/j.ijbiomac.2010.05.014
[8] Zhang, R., Hrushesky, W.J.M., Wood, P.A., Lee, S.H., Hunt, R.C. and Jahng, W.J. (2010) Melatonin reprogrammes proteomic profile in light-exposed retina in vivo. International Journal of Biological Macromolecules, 47, 255-260. doi:10.1016/j.ijbiomac.2010.04.013
[9] Arnouk, H., Lee, H., Zhang, R., Chung, H., Hunt, R.C. and Jahng, W.J. (2011) Early biosignature of oxidative stress in the retinal pigment epithelium. Journal of Proteomics, 74, 254-261. doi:10.1016/j.jprot.2010.11.004
[10] Sripathi, S.R., He, W., Atkinson, C.L., Smith, J.J., Liu, Z., Elledge, B.M. and Jahng, W.J. (2011) Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry 50, 8342-8351. doi:10.1021/bi2008933
[11] Genc, S., Kuralay, F., Genc, K., Akhisaroglu, M., Fadiloglu, S., Yorukoglu, K., Fadiloglu, M. and Gure, A. (2001) Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neuroscience Letters, 298, 139-141. doi:10.1016/S0304-3940(00)01716-X
[12] Chen, S.J., Wang, Y.L., Lo, W.T., Wu, C.C., Hsieh, C.W., Huang, C.F., Lan, Y.H., Wang, C.C., Chang, D.M. and Sytwu, H.K. (2010) Erythropoietin enhances endogenous haem oxygenase-1 and represses immune responses to ameliorate experimental autoimmune encephalomyelitis. Clinical & Experimental Immunology, 162, 210-223. doi:10.1111/j.1365-2249.2010.04238.x
[13] Sortino, S. (2010) Light-controlled nitric oxide delivering molecular assemblies. Chemical Society Review, 39, 2903- 2913. doi:10.1039/b908663n
[14] Souza, J.M., Peluffo, G. and Radi, R. (2008) Protein tyrosine nitration—Functional alteration or just a biomarker? Free Radical Biology and Medicine, 45, 357-366. doi:10.1016/j.freeradbiomed.2008.04.010
[15] Sugimoto, K., Fujii, S., Takemasa, T. and Yamashita, K. (2000) Detection of intracellular nitric oxide using a combination of aldehyde fixatives with 4,5-iaminofluorescein diacetate. Histochemistry and Cell Biology, 113, 341-347.
[16] Karnovsky, M.J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy. Journal of Cell Biology, 27, 137-138A.
[17] Bailey, T.A., Kanuga, N., Romero, I.A., Greenwood, J., Luthert, P.J. and Cheetham, M.E. (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Investigative Ophthalmology & Visual Sciences, 45, 675-684. doi:10.1167/iovs.03-0351
[18] Ando, S., Tanabe, K., Gonda, Y., Sato, C. and Inagaki, M. (1989) Domain-specific and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry, 28, 2974-2979. doi:10.1021/bi00433a035
[19] Wu, F. and Wilson, J.X. (2009) Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction. Cardiovascular Research, 81, 38-45. doi:10.1093/cvr/cvn246
[20] Medearis, S., Han, I.C., Huang, J.K., Yang, P. and Jaffe, G.J. (2011) The role of Bcl-xL in mouse RPE cell survival, Investigative Ophthalmology & Visual Science, 52, 6545-6551. doi:10.1167/iovs.10-6772
[21] Zhang, N., Peairs, J.J., Yang, P., Tyrrell, J., Roberts, J., Kole, R. and Jaffe, G.J. (2007) The importance of Bcl-xL in the survival of human RPE cells. Investigative Ophthalmology & Visual Science, 48, 3846-3853. doi:10.1167/iovs.06-1145
[22] Owaribe, K., Sugino, H. and Masuda, H. (1986) Characterization of intermediate filaments and their structural organization during epithelium formation in pigmented epithelial cells of the retina in vitro. Cell and Tissue Research, 244, 87-93. doi:10.1007/BF00218385
[23] Chang, G.Q., Hao, Y. and Wong, F. (1993) Apoptosis: Final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron, 11, 595-605. doi:10.1016/0896-6273(93)90072-Y
[24] Portera-Cailliau, C., Sung, C.H., Nathans, J. and Adler, R. (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proceedings of the National Academy of Sciences USA, 91, 974-978. doi:10.1073/pnas.91.3.974
[25] Lee, H., Arnouk, H., Sripathi, S., Chen, P., Zhang, R., Bartoli, M., Hunt, R.C., Hrushesky, W.J.M., Chung, H., Lee, S.H. and Jahng, W.J. (2010) Prohibitin as an oxidative stress biomarker in the eye. International Journal of Biological Macromolecules, 47, 685-690. doi:10.1016/j.ijbiomac.2010.08.018
[26] Lee, H., Chung, H., Lee, S.H. and Jahng, W.J. (2011) Light-induced phosphorylation of crystallins in the retinal pigment epithelium. International Journal of Biological Macromolecules, 48, 194-201. doi:10.1016/j.ijbiomac.2010.11.006
[27] Mann, B.E. and Motterlini, R. (2007) CO and NO in medicine. Chemical Communications, 4197-4208. doi:10.1039/b704873d
[28] Rose, M.J. and Mascharak, P.K. (2008) Fiat lux: Selective delivery of high flux of nitric oxide (NO) to biological targets using photoactive metal nitrosyls. Current Opinion in Chemical Biology, 12, 238-244. doi:10.1016/j.cbpa.2008.02.009
[29] Mocellin, S., Bronte, V. and Nitti, D. (2007) Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Medicinal Research Reviews, 27, 317-352. doi:10.1002/med.20092
[30] Palamalai, V., Darrow, R., Organisciak, D.T. and Miyagi, M. (2006) Light-induced changes in protein nitration in photoreceptor rod outer segments. Molecular Vision, 12, 1543-1551.
[31] Miyagi, M., Sakaguchi, H., Darrow, R.M., Yan, L., West, K.A., Aulak, K.S., Stuehr, D.J., Hollyfield, J.G., Organisciak, D.T. and Crabb, J.W. (2002) Evidence that light modulates protein nitration in rat retina. Molecular & Cellular Proteomics, 1, 293-303. doi:10.1074/mcp.M100034-MCP200
[32] Murdaugh, L.S., Wang, Z., Del Priore, L.V., Dillon, J. and Gaillard, E.R. (2010) Age-related accumulation of 3-nitrotyrosine and nitro-A2E in human Bruch’s membrane. Experimental Eye Research, 90, 564-571. doi:10.1016/j.exer.2010.01.014
[33] Marletta, M.A. (1993) Nitric-oxide synthase structure and mechanism. Journal of Biological Chemistry, 268, 12231-12234.
[34] Knowles, R.G. and Moncada, S. (1994) Nitric-oxide synthases in mammals. Biochemical Journal, 298, 249-258.
[35] Becquet, F., Courtois, Y. and Goureau, O. (1997) Nitric oxide in the eye: Multifaceted roles and diverse outcomes. Survey of Ophthalmology, 42, 71-82. doi:10.1016/S0039-6257(97)84043-X
[36] Davidson, P.C. and Sternberg, P. (1993) Potential retinal phototoxicity. American Journal of Ophthalmology, 116, 497-501.
[37] Beckman, J.S., Chen, J., Crow, J.P. and Ye, Y.Z. (1994) Reactions of nitric-oxide, superoxide and peroxynitrite with superoxide-dismutase in neurodegeneration. Progress in Brain Research, 103, 371-380. doi:10.1016/S0079-6123(08)61151-6
[38] Di Stasi, A.M., Mallozzi, C., Macchia, G., Petrucci, T.C. and Minetti, M. (1999) Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. Journal of Neurochemistry, 73, 727-735. doi:10.1046/j.1471-4159.1999.0730727.x
[39] Li Calzi, S., Purich, D.L., Chang, K.H., Afzal, A., Nakagawa, T., Busik, J.V., Agarwal, A., Segal, M.S. and Grant, M.B. (2008) Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein phosphorylation: Evidence for blunted responsiveness in diabetes. Diabetes, 57, 2488-2494. doi:10.2337/db08-0381
[40] Salceda, R., Hernandez-Espinosa, C. and Sanchez-Chavez, G. (2008) L-arginine uptake in normal and diabetic rat retina and retinal pigment epithelium. Neurochemical Research, 33, 1541-1545. doi:10.1007/s11064-008-9641-9
[41] Chen, W., Arroyo, J.D., Timmons, J.C., Possemato, R. and Hahn, W.C. (2005) Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65, 8183-8192. doi:10.1158/0008-5472.CAN-05-1103
[42] Monteiro, H.P., Arai, R.J. and Travassos, L.R. (2008) Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxidants & Redox Signaling, 10, 843-889. doi:10.1089/ars.2007.1853
[43] Tanimukai, H., Kudo, T., Tanaka, T., Grundke-Iqbal, I., Iqbal, K. and Takeda, M. (2009) Novel therapeutic strategies for neurodegenerative disease. Psychogeriatrics, 9, 103-109. doi:10.1111/j.1479-8301.2009.00289.x
[44] Kalev, P. and Sablina, A.A. (2011) Protein phosphatase 2A as a potential target for anticancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 11, 38-46. doi:10.2174/187152011794941172
[45] Cho, U.S. and Xu, W.Q. (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 445, 53-57. doi:10.1038/nature05351
[46] Xu, Y.H., Xing, Y.N., Chen, Y., Chao, Y., Lin, Z., Fan, E., Yu, J.W., Strack, S., Jeffrey, P.D. and Shi, Y.G. (2006) Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239-1251. doi:10.1016/j.cell.2006.11.033
[47] Brown, B.M., Carlson, B.L., Zhu, X., Lolley, R.N. and Craft, C.M. (2002) Light-driven translocation of the protein phosphatase 2A complex regulates light/dark dephosphorylation of phosducin and rhodopsin. Biochemistry, 19, 13526-13538. doi:10.1021/bi0204490
[48] Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Hussain, P., Vecoli, C., Paolocci, N., Ambs, C., Colton, C.A., Harris, C.C., Roberts, D.D. and Wink, D.A. (2008) The chemical biology of nitric oxide: Implications in cellular signaling. Free Radical Biology & Medicine, 45, 18-31. doi:10.1016/j.freeradbiomed.2008.03.020
[49] Thomas, D.D., Espey, M.G., Ridnour, L.A., Hofseth, L.J., Mancardi, D., Harris, C.C. and Wink, D.A. (2004) Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proceedings of the National Academy of Sciences USA, 101, 8894-8899. doi:10.1073/pnas.0400453101

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.