Nonlinear Response of Multi-Segmented Photodetectors Used for Measurements of Microcantilever Motion over Large Dynamic Ranges


The use of multi-segmented Position Sensitive Photodiodes (PSD) to measure microcantilever deflections have been found to produce nonlinear signal output, especially when the dynamic range is large. The reflected beam of the microcantilever may undergo intensity and shape modifications prior to reaching the PSD. In a multi-microcantilever sensor system the variation in the size of the individual spots plays an additional role contributing to the nonlinearities of detector output. Irrespective of the range of operation the merits of intensity normalization have been discussed. We show that the output is proportional to the width of the spot along the split line of the detector. This enables the determination of the shape of a spot. We show that the microcantilever vibrational spectrum can be obtained just using a single segment photodetector instead of using multiple segmented PSDs. These concepts will greatly facilitate interpretation of sensor data acquired from either single or multi-microcantilever experimental platforms.

Share and Cite:

A. Kar and M. George, "Nonlinear Response of Multi-Segmented Photodetectors Used for Measurements of Microcantilever Motion over Large Dynamic Ranges," Journal of Sensor Technology, Vol. 2 No. 4, 2012, pp. 196-205. doi: 10.4236/jst.2012.24027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Culshaw, “Photodetectors and Photodetection,” Sensors and Actuators, Vol. 10, No. 3-4, 1986, pp. 263-285. doi:10.1016/0250-6874(86)80050-6
[2] A. Toneva and D. Sueva, “A Comparison of Schottky Barrier Position-Sensitive Detectors as a Function of Light Wavelength,” Sensors and Actuators, Vol. 73, No. 4, 1999, pp. 210-214. doi:10.1016/S0924-4247(98)00244-1
[3] H. P. Lang, R. Berger, F. Battiston, J. -P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H. -J. Güntherodt, Ch. Gerber and J. K. Gimzewski, “A Chemical Sensor Based on a Micromechanical Cantilever Array for the Identification of Gases and Vapors,” Applied Physics A-Materials Science & Processing, Vol. 66, No. 7, 1998, pp. S61-S64.
[4] B. C. Fagan, C. A. Tipple, Z. Xue, M. J. Sepaniak and P. G. Datskos, “Modification of Micro-Cantilever Sensors with Sol-Gels to Enhance Performance and Immobilize Chemically Selective Phases,” Talanta, Vol. 53, No. 3, 2000, pp. 599-608. doi:10.1016/S0039-9140(00)00533-6
[5] Y. J. Wright, A. K. Kar, Y. W. Kim, C. Scholz and M. A. George, “Determination of Glass Transition of Polymers using Microcantilever Sensors,” Sensors and Actuators, B, 2011, in preparation.
[6] J. Malo and J. I. Izpura “Feedback-Induced Phase Noise in Microcantilever-Based Oscillators,” Sensors and Actuators A: Physical, Vol. 155, No. 1, 2009, pp. 188-194. doi:10.1016/j.sna.2009.08.001
[7] Z. Hu, T. Thundat and R. J. Warmack, “Investigation of Adsorption and Absorption-Induced Stresses Using Microcantilever Sensors,” Journal of Applied Physics, Vol. 90, No. 1, 2001, pp. 427-432. doi:10.1063/1.1378333
[8] M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science, Vol. 288, No. 5464, 2000, pp. 316-318. doi:10.1126/science.288.5464.316
[9] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote and A. Majum, “Bioassay of Prostate-Specific Antigen (PSA) Using Microcantilevers,” Nature Biotechnology, Vol. 19, No. 9, 2001, pp. 856-860. doi:10.1038/nbt0901-856
[10] N. Hilal and D. Johnson “The Use of Atomic Force Microscopy in Membrane Characterization,” Comprehensive Membrane Science and Engineering, Vol. 1.16, 2010, pp. 337-354.
[11] S. Iqbal, M. M. S. Gualini and A. Asundi, “Measurement Accuracy of Lateral-Effect Position-Sensitive Devices in Presence of Stary Illiumination Noise,” Sensors and Actuators A: Physical, Vol. 143, No. 2, 2008, pp. 286-292.
[12] G. H. Wu, H. F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty and A. Majumdar, “Origin of Nanomechanical Cantilever Motion Generated from Biomolecular Interactions,” Proceedings of the National Academy of Sciences, Vol. 98, No. 4, 2001, pp. 1560-1564. doi:10.1073/pnas.98.4.1560
[13] K. M. Hansen, H.-F. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar and T. Thundat, “Cantilever-Based Optical Deflection Assay for Discrimination of DNA Single-Nucleotide Mismatches,” Analytical Chemistry, Vol. 73, No. 7, 2001, pp. 1567-1571. doi:10.1021/ac0012748
[14] A. M. Moulin, S. J. O'Shea, and M. E. Welland, “Microcantilever-based Biosensors,” Ultramicroscopy Vol. 82, 2000, pp. 23-31. doi:10.1016/S0304-3991(99)00145-X
[15] J. K. Gimzewski, Ch. Gerber, E. Meyer and R. R. Schlittler, “Observation of a Chemical Reaction using a Microcantilever Sensor,” Chemical Physics Letters, Vol. 217, No. 5-6, 1994, pp. 589-594. doi:10.1016/0009-2614(93)E1419-H
[16] P. I. Oden, G. Y. Chen, R. A. Steele, R. J. Warmack and T. Thundat, “Viscous Drag Measurements Utilizing Microfabricated Cantilevers,” Applied Physics Letters, Vol. 68, No. 26, 1996, pp. 3814-3817. doi:10.1063/1.116626
[17] J. R. Barnes, R. J. Stephenson, M. E. Welland, Ch. Gerber and J. K. Gimzewski, “Photothermal Spectroscopy with Femtojoule Sensitivity Using a Microcantilever Device,” Nature, Vol. 372, 1994, pp. 79-81. doi:10.1038/372079a0
[18] Z. Hu, T. Seeley, S. Kossek and T. Thundat, “Calibration of Optical Cantilever Deflection Readers,” Review of Scientific Instrumentation, Vol. 75, No. 2, 2004, pp. 400-404. doi:10.1063/1.1637457
[19] G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Applied Physics Letters, Vol. 53, 1988, pp. 1045-1048. doi:10.1063/1.100061
[20] S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings and P. K. Hansma, “An Atomic—Resolution Atomic—Force Microscope Implemented Using an Optical Lever,” Journal of Applied Physics, Vol. 65, No. 1, 1989, pp. 164-169. doi:10.1063/1.342563
[21] H. P. Lang, M. Hegner, E. Meyer and Ch. Gerber, “Nanomechanics from Atomic Resolution to Molecular Recognition Based on Atomic Force Microscopy Technology,” Nanotechnology, Vol. 13, No. 5, 2002, pp. R29-R36. doi:10.1088/0957-4484/13/5/202
[22] Protiveris Incorporated, Rockville, MD 20850, USA.
[23] J. Mertens, M. Alvarez and J. Tamayo, “Real-Time Profile of Microcantilevers for Sensing Applications,” Applied Physics Letters, Vol. 87, No. 23, 2005, p. 234102. doi:10.1063/1.2136410
[24] Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner and Ch. Gerber, “Label-Free Protein Assay Based on a Nanomechanical Cantilever Array,” Nanotechnology, Vol. 14, No. 1, 2003, p. 86. doi:10.1088/0957-4484/14/1/319
[25] R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt and Ch. Gerber, “Multiple Label-Free Biodetection and Quantitative DNA-Binding Assays on a Nanomechanical Cantilever Array,” Proceedings of the National Academy of Science, Vol. 99, 2003, pp. 9783-9788.
[26] J. Fritz, M. K. Baller, H. P. Lang, T. Strunz, E. Meyer, H.-J. Guntherodt, E. Delamarche, Ch. Gerber and J. K. Gimzewski, “Stress at the Solid-Liquid Interface of SelfAssembled Monolayers on Gold Investigated with a Nanomechanical Sensor,” Langmuir, Vol. 16, No. 25, 2000, pp. 9694-9696. doi:10.1021/la000975x
[27] F. M. Battiston, J.-P. Ramseyer, H. P. Lang, M. K. Baller, Ch. Gerber, J. K. Gimzewski, E. Meyer and H.-J. Güntherodt, “A Chemical Sensor Based on a Microfabricated Cantilever Array with Simultaneous Resonance-Frequency and Bending Readout,” Sensors and Actuators B, Vol. 77, No. 1-2, 2001, pp.122-131. doi:10.1016/S0925-4005(01)00683-9
[28] M. K. Baller, H. P. Lang, J. Fritz, Ch. Gerber, J. K. Gimzewski, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, F. M. Battiston, J. P. Ramsayer, P. Foranaro, E. Meyer and H.-J. Güntherodt, “A Cantilever Based Artificial Nose,” Ultramicroscopy, Vol. 82, No. 1-4, 2000, pp. 1-9. doi:10.1016/S0304-3991(99)00123-0
[29] C. A. J. Putman, B. G. D. Grooth, N. F. V. Hulst and J. Greve, “A Detailed Analysis of the Optical Beam Deflection Technique for Use in Atomic Force Microscopy,” Journal of Applied Physics, Vol. 72, No. 1, 1992, pp. 6-13. doi:10.1063/1.352149
[30] C. A. J. Putman, B. G. D. Grooth, N. F. V. Hulst and J. Greve, “A Theoretical Comparison Between Interferometric and Optical Beam Deflection Technique for the Measurement of Cantilever Displacement in AFM,” Ultramicroscopy, Vol. 42-44, 1992, pp. 1509-1513. doi:10.1016/0304-3991(92)90474-X
[31] A. Garcia-Valenzuela and J. Villatoro, “Noise in Optical Measurements of Cantilever Deflections,” Journal of Applied Physics, Vol. 84, No. 1, 1998, pp. 58-64. doi:10.1063/1.368001
[32] M. G. L. Gustafsson and J. Clarke, “Scanning Force Microscope Springs Optimized for Optical—Beam Deflection and with Tips Made by Controlled Fracture,” Journal of Applied Physics, Vol. 76, No. 1, 1994, pp. 172-182. doi:10.1063/1.357124
[33] T. E. Sch?ffer, “Force Spectroscopy with a Large Dynamic Range Using Small Cantilevers and an Array Detector,” Journal of Applied Physics, Vol. 91, No. 7, 2002, pp. 4739-4747. doi:10.1063/1.1450258
[34] T. E. Sch?ffer, M. Richter and M. B. Viani, “Array Detector for the Atomic Force Microscope,” Applied Physics Letters, Vol. 76, No. 24, 2000, pp. 3644-3646. doi:10.1063/1.126734
[35] N. P. D’Costa and J. H. Hoh, “Calibration of Optical Lever Sensitivity for Atomic Force Microscopy,” Review of Scientific Instruments, Vol. 66, No. 10, 1995, pp. 5096-5097. doi:10.1063/1.1146135
[36] A. K. Kar and M. A. George, “Improved Detection of Thermally Induced Higher Resonance Modes and Harmonics of a Microcantilever,” Journal of Applied Physics, Vol. 94, No. 7, 2003 pp. 4626-4631. doi:10.1063/1.1604953

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.