Crystal Structure Determination and Hydrogen-Bonding Patterns in 2-Pyridinecarboxamide

Abstract

The title compound, 2-pyridinecarboxamide, C6H6N2O, crystallize in the monoclinic system with space group P21/n (No14), Z = 4, and unit cell parameters a = 5.2074(1) , b = 7.1004(1) , c = 16.2531(3) , = 100.260(1)o. The crystal structure of the title compound, was reported previously from Weissenberg photographic data with R = 0.127. It has now been redetermined, providing a significant increase in the precision of the derived geometric parameters. The crystal packing is governed by N--HO hydrogen bond-type intermolecular interactions, forming infinite one-dimensional chains with graph-set notation C(4), R22(8) and R24(8).

Share and Cite:

G. Delgado, A. Mora, M. Guillén-Guillén, J. Ramírez and J. Contreras, "Crystal Structure Determination and Hydrogen-Bonding Patterns in 2-Pyridinecarboxamide," Crystal Structure Theory and Applications, Vol. 1 No. 3, 2012, pp. 30-34. doi: 10.4236/csta.2012.13006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. A. Olsen, L. Liu, N. Ghaderi, A. Johns, M. E. Hatcher and L. J. Mueller, “The Amide Rotational Barriers in Picolinamide and Nicotinamide: NMR and Ab Initio Studies,” Journal of American Chemical Society, Vol. 125, No. 33, 2003, pp. 10125-10132. doi:10.1021/ja028751j
[2] C. B. Aakeroy, A. M. Beatty, B. A. Helfrich and M. Nieuwenhuyzen, “Do Polymorphic Compounds Make Good Cocrystallizing Agents? A Structural Case Study That Demonstrates the Importance of Synthon Flexibility,” Crystal Growth & Design, Vol. 3, No. 2, 2003, pp. 159-165. doi:10.1021/cg025593z
[3] P. Vishweshwar, A. Nangia and V. M. Lynch, “Molecular Complexes of Homologous Alkanedicarboxylic Acids with Isonicotinamide: X-Ray Crystal Structures, Hydrogen Bond Synthons, and Melting Point Alternation,” Crystal Growth & Design, Vol. 3, No. 5, 2003, pp. 783-790. doi:10.1021/cg034037h
[4] A. Lemmerer, N. B. Bathori and S. A. Bourne, “Chiral Carboxylic Acids and Their Effects on Melting-Point Behaviour in Co-Crystals with Isonicotinamide,” Acta Crystallographica, Vol. B64, No. 6, 2008, pp. 780-790. doi:10.1107/S0108768108034526
[5] J. Lu and S. Rohani, “Preparation and Characterization of Theophylline-Nicotinamide Cocrystal,” Organic Process Research & Development, Vol. 13, No. 6, 2009, pp. 1269-1275. doi:10.1021/op900047r
[6] A. Lemmerer, C. Esterhuysen and J. Bernstein, “Synthesis, Characterization, and Molecular Modeling of a Pharmaceutical Co-Crystal: (2-Chloro-4-Nitrobenzoic Acid): (Nicotinamide),” Journal of Pharmaceutical Science, Vol. 99, No. 9, 2010, pp. 4054-4071. doi:10.1002/jps.22211
[7] L. J. Thompson, R. S. Voguri, A. Cowell, L. Male and M. Tremayne, “The Cocrystal Nicotinamide—Succinic Acid (2/1),” Acta Crystallographica, Vol. C66, 2010, p. o421. doi:10.1107/S0108270110027319
[8] V. R. Hathwar, R. Pal and T. N. Guru Row, “Charge Density Analysis of Crystals of Nicotinamide with Salicylic Scid and Oxalic Acid: An Insight into the Salt to Cocrystal Continuum,” Crystal Growth & Design, Vol. 10, No. 8, 2010, pp. 3306-3310. doi:10.1021/cg100457r
[9] N. B. Bathori, A. Lemmerer, G. A. Venter, S. A. Bourne and M. R. Caira, “Pharmaceutical Co-Crystals with Isonicotinamide; VitaminB3, Clofibric Acid, and Diclofenac; and Two Isonicotinamide Hydrates,” Crystal Growth & Design, Vol. 11, No. 1, 2011, pp. 75-87. doi:10.1021/cg100670k
[10] L. Fabian, N. Hamill, K. S. Eccles, H. A. Moynihan, A. R. Maguire, L. McCausland and E. Lawrence, “Cocrystals of Fenamic Acids with Nicotinamide,” Crystal Growth & Design, Vol. 11, No. 8, 2011, pp. 3522-3528. doi:10.1021/cg200429j
[11] B. Lou and S. Hu, “Different Hydrogen-Bonded Interactions in the Cocrystals of Nicotinamide with Two Aromatic Acids,” Journal of Chemical Crystallography, Vol. 41, No. 11, 2011, pp. 1663-1668. doi:10.1007/s10870-011-0154-z
[12] R. A. E. Castro, J. D. B. Ribeiro, T. M. R. Maria, M. Ramos Silva, C. Yuste-Vivas, J. Canotilho and M. E. S. Eusebio, “Naproxen Cocrystals with Pyridinecarbox-Amide Isomers,” Crystal Growth & Design, Vol. 11, No. 12, 2011, pp. 5396-5404. doi:10.1021/cg2009946
[13] S. Tothadi and G. R. Desiraju, “Unusual Co-Crystal of Isonicotinamide the Structural Landscape in Crystal Engineering,” Philosophical Transactions of the Royal Society, Vol. A370, No. 1969, 2012, pp. 2900-2915. doi:10.1098/rsta.2011.0309
[14] E. Akalin and S. Akyuz. “Vibrational Analysis of Free and Hydrogen Bonded Complexes of Nicotinamide and Picolinamide,” Vibrational Spectroscopy, Vol. 42, No. 2, 2006, pp. 333-340. doi:10.1016/j.vibspec.2006.05.015
[15] M. Bakilera, O. Bolukbasi and A. Yilmaz, “An Experimental and Theoretical Study of Vibrational Spectra of Picolinamide, Nicotinamide, and Isonicotinamide,” Journal of Molecular Structure, Vol. 826, No. 1, 2007, pp. 6-16. doi:10.1016/j.molstruc.2006.04.021
[16] Y. Miwa, T. Mizuno, K. Tsuchida, T. Taga and Y. Iwata, “Experimental Charge Density and Electrostatic Potential in Nicotinamide,” Acta Crystallographica, Vol. B55, No. 1, 1999, pp. 78-84. doi:10.1107/S0108768198007848
[17] J. Li, S. A. Bourne and M. R. Caira, “New Polymorphs of Isonicotinamide and Nicotinamide,” Chemical Communications, Vol. 47, No. 5, 2011, pp. 1530-1532. doi:10.1039/c0cc04117c
[18] T. Takano, Y. Sasada and M. Kakudo, “The Crystal and Molecular Structure of Picolinamide,” Acta Crystallographica, Vol. 21, No. 4, 1966, pp. 514-522. doi:10.1107/S0365110X66003396
[19] F. H. Allen, “The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising,” Acta Crystallographica, Vol. B58, No. 1, 2002, pp. 380-388. doi:10.1107/S0108768102003890
[20] A. Boultif and D. Louer, “Powder Pattern Indexing with the Dichotomy Method,” Journal of Applied Crystallography, Vol. 37, No. 5, 2004, pp. 724-731. doi:10.1107/S0021889804014876
[21] A. Le Bail, H. Duroy and J. L. Fourquet, “Ab-Initio Structure Determination of LiSbWO6 by X-Ray Powder Diffraction,” Materials Research Bulletin, Vol. 23, No. 3, 1988, pp. 447-452. doi:10.1016/0025-5408(88)90019-0
[22] J. Rodriguez-Carvajal, “Fullprof, version 5.3, LLB, CEACNRS,” 2012.
[23] B. Saint, Bruker AXS Inc., Madison, 2009.
[24] B. Apex, Bruker AXS Inc., Madison, 2010.
[25] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica, Vol. A64, No. 1, 2008, pp. 112-122. doi:10.1107/S0108767307043930
[26] I. Ucar, A. Bulut, O. Z. Yesilel and O. Buyukgungor, “Picolinamidium Squarate and Di-p-Toluidinium Squarate Dehydrate,” Acta Crystallographica, Vol. C60, No. 8, 2004, pp. o585-o588. doi:10.1107/S0108270104013964
[27] A. Nielsen, C. J. McKenzie and A. D. Bond, “2-Carbamylpyridinium Tetrachloridoferrate(III),” Acta Crystallographica, Vol. E65, No. 11, 2009, p. m1359. doi:10.1107/S1600536809040148
[28] K. Gotoh, H. Nagoshi and H. Ishida, “Hydrogen-Bonded Structures of the Isomeric 2-, 3- and 4-Carbamoylpyridinium Hydrogen Chloranilates,” Acta Crystallographica, Vol. C65, No. 6, 2009, pp. o273-o277. doi:10.1107/S010827010901525X
[29] S. Ghosh, P. P. Bag and C. M. Reddy, “Co-Crystals of Sulfamethazine with Some Carboxylic Acids and Amides: Co-Former Assisted Tautomerism in an Active Pharmaceutical Ingredient and Hydrogen Bond Competition Study,” Crystal Growth & Design, Vol. 11, No. 8, 2011, pp. 3489-3503. doi:10.1021/cg200334m
[30] M. C. Etter, “Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds,” Account of Chemical Research, Vol. 23, No. 4, 1990, pp. 120-126. doi:10.1021/ar00172a005
[31] M. C. Etter, J. C. MacDonald and J. Bernstein, “GraphSet Analysis of Hydrogen-Bond Patterns in Organic Crys- tals,” Acta crystallographica, Vol. B46, No. 2, 1990, pp. 256-262. doi:10.1107/S0108768189012929

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.