Surface Modification of Hollow Glass Microspheres


Hollow Glass Microspheres are high-strength, low-density additives made from water resistant and chemically-stable soda-lime-borosilicate glass. These hollow glass microspheres offer a variety of advantages over conventional irregularly-shaped mineral fillers or glass fiber. Their spherical shape helps reduce resin content in a variety of applications. They also create a ball bearing effect that can result in higher filler loading and improved flow. In this research, amine terminated hollow glass microspheres were prepared by adopting three different routes. The results were investigated using FT-IR and SEM to establish the formation of amine groups and observe the morphological structure of the modified HGMs. The results obtained were used to select a suitable less toxic and environmental friendly modification method based on the chemicals used.

Share and Cite:

F. Mutua, P. Lin, J. Koech and Y. Wang, "Surface Modification of Hollow Glass Microspheres," Materials Sciences and Applications, Vol. 3 No. 12, 2012, pp. 856-860. doi: 10.4236/msa.2012.312125.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Voda, et al., “Investigation of Soft Segments of Ther moplastic Polyurethane by NMR, Differential Scanning Calorimetry and Rebound Resilience,” Polymer Testing, Vol. 25, No. 2, 2006, pp. 203-213. doi:10.1016/j.polymertesting.2005.10.007
[2] E. M. Wouterson, et al., “Specific Properties and Fracture Toughness of Syntactic Foam: Effect of Foam Micro structures,” Composites Science and Technology, Vol. 65, No. 11-12, 2005, pp. 1840-1850. doi:10.1016/j.compscitech.2005.03.012
[3] G. Tagliavia, M. Porfiri and N. Gupta, “Vinyl Ester— Glass Hollow Particle Composites: Dynamic Mechanical Properties at High Inclusion Volume Fraction,” Journal of Composite Materials, Vol. 43, No. 5, 2009, pp. 561 582. doi:10.1177/0021998308097683
[4] J. S. Huang and L. J. Gibson, “Elastic Moduli of a Composite of Hollow Spheres in a Matrix,” Journal of the Mechanics and Physics of Solids, Vol. 41, No. 1, 1993, pp. 55-75. doi:10.1016/0022-5096(93)90063-L
[5] G. Gladysz, et al., “Three-Phase Syntactic Foams: Structure-Property Relationships,” Journal of Materials Science, Vol. 41, No. 13, 2006, pp. 4085-4092. doi:10.1007/s10853-006-7646-9
[6] H. S. Kim and M. A. Khamis, “Fracture and Impact Behaviours of Hollow Micro-Sphere/Epoxy Resin Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 9, 2001, pp. 1311-1317. doi:10.1016/S1359-835X(01)00098-7
[7] H. S. Kim and P. Plubrai, “Manufacturing and Failure Mechanisms of Syntactic Foam under Compression,” Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 9, 2004, pp. 1009-1015. doi:10.1016/j.compositesa.2004.03.013
[8] N. Gupta and R. Nagorny, “Tensile Properties of Glass Microballoon-Epoxy Resin Syntactic Foams,” Journal of Applied Polymer Science, Vol. 102, No. 2, 2006, pp. 1254 1261. doi:10.1002/app.23548
[9] A. Calahorra, O. Gara and S. Kenig, “Thin Film Parylene Coating of Three-Phase Syntactic Foams,” Journal of Cellular Plastics, Vol. 23, No. 4, 1987, pp. 383-398. doi:10.1177/0021955X8702300402
[10] Bilow, N. and P.M. Sawko, Coating Processes for Increasing the Moisture Resistance of Polyurethane Baffle Material,” Journal of Cellular Plastics, Vol. 11, No. 4, 1975, pp. 207-212. doi:10.1177/0021955X7501100404
[11] M. M. Ashton-Patton, M. M. Hall and J. E. Shelby, “Formation of Low Density Polyethylene/Hollow Glass Mi crospheres Composites,” Journal of Non-Crystalline Sol ids, Vol. 352, No. 6-7, 2006, pp. 615-619. doi:10.1016/j.jnoncrysol.2005.11.058
[12] S. N. Patankar and Y. A. Kranov, “Hollow Glass Micro sphere HDPE Composites for Low Energy Sustainability,” Materials Science and Engineering: A, Vol. 527, No. 6, 2010, pp. 1361-1366. doi:10.1016/j.msea.2009.10.019
[13] H. Im, S.C.Roh and K. K. Chang, “Fabrication of Novel Polyurethane Elastomer Composites Containing Hollow Glass Microspheres and Their Underwater Applications,” Industrial & Engineering Chemistry Research, Vol. 50, No. 12, 2011, pp. 7305-7312. doi:10.1021/ie102600q
[14] Z.-G. An, J.-J. Zhang and S.-L. Pan, “Fabrication of Glass/Ni-Fe-P Ternary Alloy Core/Shell Composite Hollow Microspheres through a Modified Electroless Plating Process,” Applied Surface Science, Vol. 255, No. 5, 2008, pp. 2219-2224. doi:10.1016/j.apsusc.2008.07.067
[15] G. Arslan, M. O. B. Gunduz, X. L. Zhang and M. Ersoz, “Surface Modifcation of Glass Beads with Aminosilane Monolayer,” Turkish Journal of Chemistry, Vol. 30, 2006, pp. 203-210.
[16] S. J. Marshall, et al., “A Review of Adhesion Science,” Dental Materials, Vol. 26, No. 2, 2010, pp. e11-e16. doi:10.1016/
[17] T. Paunikallio, M. Suvanto and T. T. Pakkanen, “Viscose Fiber/Polyamide 12 Composites: Novel Gas-Phase Method for the Modification of Cellulose Fibers with an Aminosilane Coupling Agent,” Journal of Applied Polymer Science, Vol. 102, No. 5, 2006, pp. 4478-4483. doi:10.1002/app.24789
[18] J. W. Kim, L. U. Kim and C. K. Kim, “Size Control of Silica Nanoparticles and Their Surface Treatment for Fabrication of Dental Nanocomposites,” Biomacromolecules, Vol. 8, No. 1, 2006, pp. 215-222. doi:10.1021/bm060560b

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.