Genetic variation of Norway spruce clones regarding their natural durability, physical and chemical properties


Genetic variation of ten Norway spruce (Picea abies (L.) Karst.) clones regarding their decay resistance against brown rot fungi, as well as physical and chemical properties of clones were investigated. 31- year-old spruce clones: 26, 31, A10, A15, A7, B10, B15, B6, V7, V9 were selected across Latvia. The stem diameters of spruce clones varied between 13.0 and 20.9 cm. The wood density of clones ranged from 361 to 443 kg/m3. Klason lignin content, depending on the clone, was between 27.0%-28.9%. Cellular UV microspectrophotometry of the non-infected tracheids displayed the typical lignin distribution with highest absorbance values in the cell corners (abs280 nm 0.80) and compound middle lamellae (abs280 nm 0.48), while secondary wall showed lower lignin absorbance values (abs280 nm0.29 - 0.35). The deposition of phenolic extractives in ray parenchyma and epithelial cells of resin canals were emphasized by a significantly higher UV-absorbance (abs280 nm 0.68 to 0.78) when compared to the cell wall associated lignin. The content of acetone-soluble extractives of spruce clones varied between 1.1% - 1.8%. The x-value (natural durability) for all spruce clones after exposure to C. puteana and P. placentawas >0.90 (durability class 5, not durable). Most of clones after degradation by G. trabeum had x-value > 0.90 with exception of clones B15 and V9 that showed x-value ≤ 0.90 (durability class 4, slightly durable). Natural durability of spruce clones did not correlate with stem diameter, density, content of lignin and extractives.

Share and Cite:

Irbe, I. , Noldt, G. , Grinfelds, U. , Verovkins, A. , Jansons, A. and Koch, G. (2012) Genetic variation of Norway spruce clones regarding their natural durability, physical and chemical properties. Advances in Bioscience and Biotechnology, 3, 1104-1112. doi: 10.4236/abb.2012.38135.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Goodell, B., Nicholas, D.D. and Schultz, T.P. (2003) Wood deterioration and preservation. American Chemical Society (ACS), Washington DC. doi:10.1021/bk-2003-0845
[2] Schmidt, O. (2006) Wood and tree fungi. Springer-Verlag, Berlin, Heidelberg.
[3] Irbe, I., Andersons, B., Chirkova, J., Kallavus, U., Andersone, I. and Faix, O. (2006) On the changes of pinewood (Pinus sylvestris L.) chemical composition and ultrastructure during the attack by brownrot fungi Postia placenta and Coniophora puteana. International Biodeterioration and Biodegradation, 57, 99-106. doi:10.1016/j.ibiod.2005.12.002
[4] Irbe, I., Andersone, I., Andersons, B., Noldt, G., Dizhbite, T., Kurnosova, N., Nuopponen, M. and Stewart, D. (2011) Characterisation of initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brownrot fungus Coniophora puteana. Biodegradation, 22, 719-728. doi:10.1007/s10532-010-9449-6
[5] Vance, C.P., Kirk, T.K. and Sherwood, R.T. (1980) Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18, 259-288. doi:10.1146/
[6] Humar, M., Fabcic, B., Zupancic, M., Pohleven, F. and Oven, P. (2008) Influence of xylem growth ring width and wood density on durability of oak heartwood. International Biodeterioration and Biodegradation, 62, 368-371. doi:10.1016/j.ibiod.2008.03.010
[7] Aloui, F., Ayadi, N., Charrier, F. and Charrier, B. (2004) Durability of European oak (Quercus petraea and Quercus robur) against white rot fungi (Coriolus versicolor): Relations with phenol extractives. Holzals Rohund Werkstoff, 62, 286-290.
[8] Gierlinger, N., Jacques, D., Grabner, M., Wimmer, R., Schwanninger, M., Rozenberg, P. and Paques, L.E. (2004) Colour of larch heartwood and relationships to extractives and brownrot decay resistance. Trees, 18, 102-108. doi:10.1007/s00468-003-0290-y
[9] Duenisch, O., Richter, H.G. and Koch, G. (2010) Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L.. Wood Science and Technology, 44, 301- 313. doi:10.1007/s00226-009-0275-0
[10] Venalainen, M., Harju, A.M., Saranp??, P., Kainulainen, P., Tiitta, M. and Velling, P. (2004) The concentration of phenolics in brownrot decay resistant and susceptible Scots pine heartwood. Wood Science and Technology, 38, 109-118. doi:10.1007/s00226-004-0226-8
[11] Hovelstad, H., Leirset, I., Oyaas, K. and Fiksdahl, A. (2006) Screening analyses of pino-sylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules, 11, 103-114. doi:10.3390/11010103
[12] Rayner, A.D.M. and Boddy, L. (1988) Fungal decomposition of wood. Wiley & Sons, New York.
[13] Eaton, R.A. and Hale, M.D.C. (1993) Wood, decay, pest and protection. Chapman and Hall, London.
[14] EN 335-1 (2006) Durability of wood and wood-based products. Definition of hazard classes of biological attack —Part 1: General. European Committee for Standardization (CEN), Brussels.
[15] Fl?te, P.O., Alfredsen, G. and Evans, F.G. (2011) Natural urability of wood tested in different environments in Northern Europe. Document IRG/WP 11-10747, IRG Secretariat, Stockholm.
[16] Hillis, W.E. (1987) Heartwood and tree exudates. Springer-Verlag, Berlin. doi:10.1007/978-3-642-72534-0
[17] Ko, J.H., Yang, J., Oh, S., Park, S. and Han, K.H. (2004) Genomics of wood formation. In: Kumar, S. and Fladung, M., Eds., Molecular Genetics and Breeding of Forest Trees, Food Products Press, An Imprint of The Haworth Press Inc., New York, London, Oxford, 113-140.
[18] Pallardy, S.G. (2008) Physiology of woody plants. Academic Press imprint of Elsevier, Burlington.
[19] Elowson, T., Bergstrom, M. and Hamalainen, M. (2003) Moisture dynamics in Norway spruce and Scots pine during nine years of outdoor exposure above ground in relation to different surface treatments and handling conditions. Holzforschung, 57, 219-227. doi:10.1515/HF.2003.032
[20] Rydell, A., Bergstrom, M. and Elowson, T. (2005) Mass loss and moisture dynamics of Scots pine (Pinus sylvestris) exposed outdoors above ground in Sweden. Holzfor- schung, 59, 183-189. doi:10.1515/HF.2005.029
[21] EN 350 (2000) Durability of wood and wood-based products—Natural durability of solid wood—Part 1: Guide to the principles of testing and classification of the natural durability of wood. Part 2: Guide to natural durability and treatability of selected wood species of importance in Europe. European Committee for Standardization (CEN), Brussels.
[22] Raberg, U., Edlund, M-L., Terziev, N. and Land, C.J. (2005) Testing and evaluation of natural durability of wood in above ground conditions in Europe—An over view. Journal of Wood Science, 51, 429-440.
[23] EN 113 (2000) Wood preservatives. Method of test for determining the protective effectiveness against wood de- stroying basidiomycetes. European Committee for Standardization (CEN), Brussels.
[24] Sandermann, W., Hausen, B. and Simatupang, M. (1967) Orientierende versuche zur differenzierung von splint und kern sowie zum sichtbarmachen der uebergangszone von fichte und anderen nadelh?lzern. Das Papier Jahrgang, 21, 349-354.
[25] DIN 50014-20/65-1 (1985) Climates and their technical application. Deutsches Institut für Normung, Berlin.
[26] DIN 68364 (1979) Testing of wood; determination of density. Deutsches Institut für Normung, Berlin.
[27] Browning, B.L. (1967) Methods of wood chemistry. Vol. I. Wiley & Sons, Interscience Publishers, New York.
[28] TAPPI T280 pm-99 standard (2000) Acetone extractives of wood and pulp. Technical Association of the Pulp and Paper Industry, TAPPI Press, USA.
[29] Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultra-structural Research, 26, 31-43. doi:10.1016/S0022-5320(69)90033-1
[30] Koch, G. and Kleist, G. (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung, 55, 563-567. doi:10.1515/HF.2001.091
[31] Koch, G. and Grünwald, C. (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt, U., Ed., Wood Fibre Cell Walls: Methods to Study Their Formation, Structure and Properties, Swedish University of Agricultural Sciences, Uppsala, 119-130.
[32] Bergstrom, M., Rydell, A. and Elowson, T. (2004) Dura bility of untreated Norway spruce (Picea abies) exposed outdoors above ground for nine years. Holzforschung, 58, 167-172. doi:10.1515/HF.2004.025
[33] Fengel, D. and Wegener, G. (2003) Wood—Chemistry, ultrastructure, reactions. Verlag Kessel, Remagen.
[34] Harju, A.M., Venalainen, M., Anttonen, S., Viitanen, H., Kainulainen, P., Saranp??, P. and Vapaavuori, E. (2003) Chemical factors affecting the brownrot decay resistance of Scots pine heartwood. Trees, 17, 263-268.
[35] Lange, P.W. (1954) The distribution of the components in the plant cell walls. Svensk Papperstidn, 57, 563-567.
[36] Fergus, B.J., Procter, A.R., Scott, A.N. and Goring, D.A.I. (1969) The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Science and Technology, 3, 117-138. doi:10.1007/BF00639636
[37] Fergus, B.J. and Goring, D.A.I. (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung, 24, 113-117. doi:10.1515/hfsg.1970.24.4.113
[38] Musha, Y. and Goring, D.A.I. (1975) Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Science and Technology, 9, 45-58. doi:10.1007/BF00351914
[39] Fujii, T., Shimizu, K. and Yamaguchi, A. (1987) Enzy- matic saccharification on ultra thin sections and ultraviolet spectra of Japanese hardwoods and softwoods. Moku- zai Gakkaishi, 33, 400-407.
[40] Sander, C. and Koch, G. (2000) Effects of acetylation and hydrothermal treatment on lignin as revealed by cellular UV-spectroscopy in Norway spruce (Picea abies (L.) Karst.). Holzforschung, 85, 1-6.
[41] Koch, G., Rose, B., Patt, R. and Kordasachia, O. (2003b) Topochemical investigations on delignification of Picea abies (L.) Karst. during alkaline sulfite (ASA) and bisul- fite pulping by scanning UV microspectrophotometry. Holzforschung, 57, 611-618. doi:10.1515/HF.2003.092
[42] Saranp??, P., Vapaavuori, E. and Peltola, H. (2000) Effect of forest management on wood quality. In: Paavilainen, L., Ed., Metsaalan Tutkimusohjelma, Wood Wisdom, Vuosikirja 1999, Raportti 2/2000, 178-185.
[43] Fagerstedt, K., Ritschkoff, A.C. and Saranp??, P. (2005) Natural variations in the amount of lignin in Norway spruce: can lignin be modified to change the properties of wood products? In: Jalkanen, A. and Nygren, P., Eds., Sustainable Use of Renewable Natural Resources-From Principles to Practices, University of Helsinki, Department of Forest Ecology Publications, 34, 1-7.
[44] Koch, G., Puls, J. and Bauch, J. (2003a) Topochemical characterization of phenolic extractives in discoloured beechwood (Fagus sylvatica L.). Holzforschung, 57, 339- 345. doi:10.1515/HF.2003.051
[45] Ekmann, R. and Holmbom, B. (2000) The chemistry of wood resin. In: Back, E.L. and Allen, L.H. Eds., Pitch Control, Wood Resin and Deresination, TAPPI Press, Atlanta, 37-76.
[46] Niamke, F.B., Amusant, N., Lemenager, N., Chaix, G., Thévenon, M.F., Baudasse, C., Kati-Coulibaly, S., Adima, A.A., Ado, I.G. and Jay-Allemand, C. (2011) Decay resistance attributes of teak (Tectona grandis L. f.) wood: Comparison of the fungicidal activities of quinines. Document IRG/WP 11-10752, IRG Secretariat, Stockholm.
[47] Kutnik, M., Lepetit, S. and Le Neve, S. (2011) Performances of Douglas fir in real outdoor use conditions. Document IRG/WP 10-20472, IRG Secretariat, Stockholm.
[48] Ulvcrona, T., Lindberg, H. and Bergsten, U. (2006) Impregnation of Norway spruce (Picea abies L. Karst.) wood by hydrophobic oil and dispersion patterns in different tissues. Forestry, 79, 123-134. doi:10.1093/forestry/cpi064
[49] Usta, I. and Hale, M.D. (2006) Comparison of the bordered pits of two species of spruce (Pinaceae) in a green and kilndried condition and their effects on fluid flow in the stem wood in relation to wood preservation. Forestry, 79, 467-475. doi:10.1093/forestry/cpl011
[50] Andersons, B., Andersone, I., Biziks, V., Irbe, I., Chirkova, J., Sansonetti, E., Grinins, J. and Militz, H. (2010) Hydrothermal modification for upgrading the durability properties of soft deciduous wood. Document IRG/WP 10-40494, IRG Secretariat, Stochol

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.