New Model for Drain and Gate Current of Single-Electron Transistor at High Temperature

DOI: 10.4236/wjnse.2012.24022   PDF   HTML     4,144 Downloads   7,470 Views   Citations

Abstract

We propose a novel analytical model to describe the drain-source current as well as gate-source of single-electron transistors (SETs) at high temperature. Our model consists on summing the tunnel current and thermionic contribution. This model will be compared with another model.

Share and Cite:

A. Touati, S. Chatbouri, N. Sghaier and A. Kalboussi, "New Model for Drain and Gate Current of Single-Electron Transistor at High Temperature," World Journal of Nano Science and Engineering, Vol. 2 No. 4, 2012, pp. 171-175. doi: 10.4236/wjnse.2012.24022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] http://www.itrs.net/Links/2009ITRS/
[2] http://www.intel.com/technology/mooreslaw/
[3] C. Wassuber, H. Kosina and S. Selbertherr, “SIMON—A Simulator for Single-Electron Tunnel Devices and Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 9, 1997, pp. 937-944. Hdoi:10.1109/43.658562
[4] R. H. Chen, “MOSES: A General Monte Carlo Simulator for Single-Electronic Circuits,” The Electrochemical Society, Vol. 96-2, 1996, p. 576.
[5] K. Uchida, K. Matsuzawa, J. Koga, R. Ohba, S. Takagi and A. Toriumi, “Analytical Single-Electron Transistor (SET) Model for Design and Analysis of Realistic SET Circuits,” Japanese Journal of Applied Physics, Vol. 39, Part 1, No. 4B, 2000, pp. 2321-2324. Hdoi:10.1143/JJAP.39.2321H
[6] H. Inokawa and Y. Takahashi, “A Compact Analytical Model for Asymmetric Single-Electron Tunneling Transistors,” IEEE Transactions on Electron Devices, Vol. 50, No. 2, 2003, pp. 455-461. Hdoi:10.1109/TED.2002.808554
[7] S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee and A. M. Ionescu, “Analytical Modeling of Single Electron Transistor for Hybrid CMOS-SET Analog IC Design,” IEEE Transactions on Electron Devices, Vol. 51, No. 11, 2004, pp. 1772-1782. Hdoi:10.1109/TED.2004.837369
[8] T. Dittrich, P. H?nggie, G. L. Ingold, B. Kramer, G. Sch??n and W. Zwerger, “Quantum Transport and Dissipation,” Wiley-VCH, Berlin, 1998.
[9] C. Delerue and M. Lanno, “Nanostructures: Theory and Modelling,” Springer, Berlin, 2004.
[10] D. V. Averin and K. K. Likharev, “Mesoscopic Phenomena in Solids,” Elsevier, Amsterdam, 1991.
[11] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” 3rd Edition, John Wiley & Sons, New Jersey, 2007.
[12] C. Dubuc, J. Beauvais and D. Drouin, “A Nanodamascene Process for Advanced Single-Electron Transistor Fabrication,” IEEE Transactions on Nanotechnology, Vol. 7, No. 1, 2008, pp. 68-73.
[13] A. Beaumont, C. Dubuc, J. Beauvais and D. Drouin, “A Nanodamascene Process for Advanced Single-Electron Transistor Fabrication,” IEEE Transactions on Nanotechnologyon, Vol. 7, No. 1, 2009, pp. 68-73. doi:10.1109/TNANO.2007.91343010
[14] C. Dubuc, A. Beaumont, J. Beauvais and D. Drouin, “Current Conduction Models in the High Temperature Single-Electron Transistor,” Solid-State Electronics, Vol. 53, No. 5, 2009, pp. 478-482. Hdoi:10.1016/j.sse.2009.03.003
[15] J. H. Werner and H. H. Guttler, “Barrier Inhomogeneities at Schottky Contacts,” Journal of Applied Physics, Vol. 69, No. 3, 1991, pp. 1522-1533. Hdoi:10.1063/1.347243

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.