Synthesis and Trypanocidal Evaluation of Some Novel 2-(Substituted Benzylidene)-5, 7-Dibromo-6-Hydroxy-1-Benzofuran-3(2H)-Ones

Abstract

Substituted 2-benzylidene-1-benzofuran-3-ones are commonly known as aurones. This class of bioactive heterocycles belongs to flavonoid family. The article intends to put forth the rational design and synthesis of a new series of aurones using 3’,5’-dibromo-2’,4’-dihydroxychalcones and copper bromide in presence of DMF-water mixture (8:2, v/v) for the first time. Preliminary bioassay shows that most of compounds have good trypanocidal activity against Trypanosoma cruzi at 10 μg/mL. Few compounds are equally potent to the standard drugs Benznidazole and Nifurtimox. The structures of the newly synthesized products 2a-n were established by elemental analysis, FTIR, 1H NMR, 13C NMR and mass spectroscopic studies.

Share and Cite:

K. Ameta, N. Rathore, B. Kumar, E. Malaga M, M. P, R. Gilman and B. Verma, "Synthesis and Trypanocidal Evaluation of Some Novel 2-(Substituted Benzylidene)-5, 7-Dibromo-6-Hydroxy-1-Benzofuran-3(2H)-Ones," International Journal of Organic Chemistry, Vol. 2 No. 3A, 2012, pp. 295-301. doi: 10.4236/ijoc.2012.223040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. A. Geissmann, “The Chemistry of Flavonoids Compounds,” Pergamon Press, Oxford, London, Vol. 100, No. 1, 1962, pp. 60-61.
[2] A. R. Katritzky, H. H. Odens, S. M. Zhang, C. J. Rostek and O. W. Maender, “Novel Syntheses of 2,3-Dihydro- 1,5-benzothiazepin-4(5H)-ones and 2H-1,4-benzothiazin- 3(4H)-ones,” Journal of Organic Chemistry, Vol. 66, No. 20, 2001, pp. 6792-6796. doi:10.1021/jo0101959
[3] O. Kayser, A. F. Kiderlen and R. Brun, “In vitro Activity of Aurones against Plasmodium Falciparum Strains K1 and NF54,” Planta Medica, Vol. 67, No. 8, 2001, pp. 718-721. doi:10.1055/s-2001-18356
[4] O. Kayser, A. F. Kiderlen, U. Folkens and H. Kolodziej, “In vitro Leishmanicidal Activity of Aurones,” Planta Medica, Vol. 65, No. 4, 1999, pp. 316-319. doi:10.1055/s-1999-13993
[5] B. Malhotra, J. C. Onyillagha, B. A. Bohm, G. H. N. Towers, D. James, J. B. Harborne and C. J. French, “Inhibition of Tomato Ring-Spot Virus by Flavo-noids,” Phytochemistry, Vol. 43, No. 6, 1996, pp. 1271-1276. doi:10.1016/S0031-9422(95)00522-6
[6] N. Hadj-Esfandiari, L. Navidpour, H. Shadnia, M. Amini, N. Samadi, M. A. Faramarzi and A. Shafiee, “Synthesis, Antibacterial Activity, and Quantitative Structure-Activity Relationships of New (Z)-2(Nitroimidazolylmethlene)-3(2H)-bezofuranone Derivatives,” Bioorganic and Medicinal Chemistry Letters, Vol. 17, No. 22, 2007, pp. 6354-6363. doi:10.1016/j.bmcl.2007.09.062
[7] N. Fujii, J. P. Mallari, E. J. Hansell, Z. Mackey, P. Doyle, Y. M. Zhou, J. Gut, P. J. Rosenthal, J. H. McKer- row and R. K. Guy, “Discovery of Potent Thiosemicar-bazone Inhibitors of Rhodesain and Cruzain,” Bioorganic and Medicinal Chemistry Letters, Vol. 15, No. 1, 2003, pp. 121-124. doi:10.1016/j.bmcl.2004.10.023
[8] R. Siles, S. E. Chen, M. Zhou, K. G. Pinney and M. L. Trawick, “Design, Synthesis, and Biochemical Evaluation of Novel Cruzain Inhibitors with Potential Application in the Treatment of Chagas’ Disease,” Bioorganic and Medicinal Chemistry Letters, Vol.16, No. 16, 2006, pp. 4405-4409. doi:10.1016/j.bmcl.2006.05.041
[9] R. V. C. Guido, G. Oliva, C. A. Montanari and A. D. Andricopulo, “Structural Basis for Selective Inhibition of Trypanosomatid Glyceraldehyde-3-Phosphate Dehydrogenase: MolecuLar Docking and 3D QSAR Studies,” Journal of Chemical Information and Modeling, Vol. 48, No. 4, 2008, pp. 918-929. doi:10.1021/ci700453j
[10] D. M. Borchhardt, A. Mascarello, L. D. Chiaradia, R. J. Nunes, G. Oliva, R. A. Yunes and A. D. Andricopulo, “Biochemical Evaluation of a Series of Synthetic Chalcone and Hydrazide Derivatives as Novel Inhibitors of Cruzain from Trypanosoma cruzi,” Journal of Brzalian Chemical Society, Vol. 21, No. 1, 2010, pp. 142-150. doi:10.1590/S0103-50532010000100021
[11] P. M. Sivakumar, S. Ganesan, P. Veluchamy and M. Do- ble, “Novel Chalcones and 1,3,5-Triphenyl-2-Pyrazoline Derivatives as Antibacterial Agents,” Chemical Biology and Drug Design, Vol. 76, No. 5, 2010, pp. 407-411. doi:10.1111/j.1747-0285.2010.01020.x
[12] A. R. Trivedi, D. K. Dodiya, N. R. Ravat and V. H. Shah, “Synthesis and Biological Evaluation of Some New Pyrimidines via a Novel Chalcone Series,” Arkivoc, Vol. xi, 2008, pp. 131-141.
[13] F. Herencia, M. L. Ferrandiz, A. Ubeda, J. N. Dominguez, J. E. Charris, G. M. Lobo and M. J. Alcaraz, “Synthesis and Anti-Inflammatory Activity of Chalcone Derivatives,” Bioorganic and Medicinal Chemistry Letters, Vol. 8, No. 10, 1998, pp. 1169-1174. doi:10.1016/S0960-894X(98)00179-6
[14] X. Wu, P. Wilairat and M. L. Go, “Antimalarial Activity of Ferrocenyl Chalcones,” Bioorganic and Medicinal Chemistry Letters, Vol. 12, No. 7, 2002, pp. 2299-2302. doi:10.1016/S0960-894X(02)00430-4
[15] J. H. Cheng, C. F. Hung, S. C. Yang, J. P. Wang, S. J. Won and C. H. Lin, “Synthesis and Cytotoxic, Anti-Inflammatory, and Anti-Oxidant Activities of 2’,5’ Dialkoxylchalcones as Cancer Chemopreventive Agents,” Bioorganic and Medicinal Chemistry, Vol. 16, No. 15, 2008, pp. 7270-7278. doi:10.1016/j.bmc.2008.06.031
[16] Y. M. Lin, Y. Zhou, M. T. Flavin, L. M. Zhou, W. Nie and F. C. Chen, “Chalcones and Flavonoids as Anti-Tu- berculosis Agents,” Bioorganic and Medicinal Chemistry, Vol. 10, No. 8, 2002, pp. 2795-2802. doi:10.1016/S0968-0896(02)00094-9
[17] S. S. Rao, U. S. Gahlot, S. S. Dulawat, R. Vyas, K. L. Ameta and B. L.Verma, “Microwave Induced Improved Synthesis and Anti-Bacterial Activity of Some Chalcones And Their 1-Acyl-3,5-Diaryl-2-Pyrazolines,” Afinidad, Vol. 60, No. 505, 2003, pp. 271-276.
[18] S. Kothari, R. Vyas and B. L. Verma, “A Facile One Pot Conversion of 3’,5’-Dibromo-4-Hydroxy Substituted Chalcone to Pyrimidine Derivatives and Their Antibac- terial and Herbicidal Activity,” Indian Journal of Heterocyclic Chemistry, Vol. 8, No. 4, 1999, pp. 285-288.
[19] U. S. Gahlot, S. S. Rao, S. S. Dulawat, K. L. Ameta and B. L. Verma, “A Facile One-Pot Microwave Assisted Conversion of 3’-5’-Dibromo/Diiodo-4’-Hydroxy Substi- tutes Chalcones to 2-Substituted-4,6-Diaryl Pyrimi- dines Using S-Benzylisothiouronium Chloride (SBT) and Their Antibacterial Activities,” Afinidad, Vol. 60, No. 508, 2003, pp. 558-562.
[20] K. L. Ameta, Biresh Kumar, Nitu. S. Rathore and B. L. Verma, “Facile Synthesis of Some Novel 2-Substituted- 4,6-Diarylpyrimidines Using 4’-Hydroxy-3’,5’-dinitro- chalcones and S-Benzylthiouronium Chloride,” Organic Communication, Vol.5, No. 1, 2012, pp. 1-11.
[21] A. Jiang, C. G.Yang, W. N. Xing and J. Wang, “Synthesis and cytotoxicity of evaluation of novel indolylpyrimi- dines and indolylpyrazines as potential antitumor agents,” Bioorganic and Medicinal Chemistry, Vol. 9, 2001, pp. 1149-1154. doi:10.1016/S0968-0896(00)00337-0
[22] K. L. Ameta, B. Kumar and N. S. Rathore, “Microwave Induced Improved Synthesis of Some Novel Substituted 1, 3-Diarylpropenones and Their Antimicrobial Activity,” E-Journal of Chemistry, Vol. 8, No. 2, 2011, pp. 665-671. doi:10.1155/2011/165047
[23] K. L. Ameta, N. S. Rathore and B. Kumar, “Synthesis of Some Novel Chalcones and Their Facile One-Pot Conversion to 2-Aminobenzene-1,3-Dicarbonitriles Using Malononitrile,” Analele Universitatii Bucuresti Chimie, Vol. 20, No. 1, 2011, pp. 15-24.
[24] K. L. Ameta, N. S. Rathore and B. Kumar, “Synthesis and in Vitro Anti Breast Cancer Activity of Some Novel 1,5- Benzothiazepine Derivatives,” Journal of Serbian Chemical Society, Vol. 77, No. 6, 2012, pp. 725-731. doi:10.2298/JSC110715219A
[25] G. Wagner and B. Eppner, “Synthesis of Amidinoben- zylidene Derivatives of Coumaran-3-One, 5,6-Benzocoumaran-3-One and 1-Thiocoumaran-3-One,” Pharmazie, Vol. 34, 1979, pp. 527-530.
[26] L. Farkas, M. Nógrádi and L. Pallos, “The Correct Structure and Synthesis of Rengasine,” Tetrahedron Letters, Vol. 4, No. 28, 1963, pp. 1999-2000. doi:10.1016/S0040-4039(01)90957-8
[27] R. S. Varma and M. Varma, “Alumina-Mediated Condensation. A Simple Synthesis of Aurones,” Tetrahedron Letters, Vol. 33, No. 40, 1992, pp. 5937-5940. doi:10.1016/S0040-4039(00)61093-6
[28] D. Villemin, B. Martin and N. Bar, “Application of Microwave in Organic Synthesis. Dry Synthesis of 2- Ar-yl-methylene-3(2)-Naphthofuranones,” Molecules, Vol. 3, No. 3, 1998, pp. 88-93. doi:10.3390/30300088
[29] N. N. Agrawal and P. A. Soni, “A New Process for the Synthesis of Aurones by Using Mercury (II) Acetate in Pyridine and Cupric Bromide in Dimethyl Sulfoxide,” Indian Journal of Chemistry, Vol. 45B, No. 5, 2006, pp. 1301- 1303.
[30] B. S. Dawane, S. G. Konda, N. T. Khandare, S. S. Chobe, B. M. Shaikh, R. G. Bodade and V. D. Joshi, “Synthesis and Antimicrobial Evaluation of 2-(2-Butyl-4-chloro- 1H-imidazol-5-yl-methylene)-substituted-benzofuran-3-Ones,” Organic Communication, Vol.3, No. 2, 2010, pp. 22-29.
[31] F. S. Buckner, C. L. Verlinde, A. C. La Flamme and W. C. van Voorhis, “Efficient Technique for Screening Drugs for Activity against Trypanosoma cruzi Using Parasites Expressing β-Galactosidase,” Antimicro Agents and Chemotherapy, Vol. 40, No. 11, 1996, pp. 2592- 2597.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.